Molecular Genetics of Brassicaceae Based on AFLP Display

AFLP 분석을 이용한 배추과 식물의 종속간 분자유전연구

Kwon, Soo-Jin;Lim, Ki-Byung;Lim, Myung-Ho;Park, Jee-Young;Kim, Jin-A;Kim, Jung-Sun;Lee, Soo-Seong;Park, Beom-Seok;Jin, Yong-Moon
권수진;임기병;임명호;박지영;김진아;김정선;이수성;박범석;진용문

  • Published : 2007.06.30

Abstract

Genetic diversity and relationship in the related plant taxa is a prerequisite for crop improvement. Amplified fragment length polymorphism (AFLP) fingerprinting is one of the powerful and widely used tools, which has found wide spread application in numerous studies ranging from genetic mapping to diversity surveys in plants and other organisms. Genome relationship among diploid and allotetraploid Brassica taxa, and between interspecific hybrid or intergeneric hybrid and their parental species were investigated using AFLP display. The two primer pairs for AFLP reactions and seven EcoRI (+2) and M5eI (+3) primer combinations were used in the measurement of genetic relationships. Genetic similarities among nine accessions were estimated by Nei’s distance equation, and cluster analysis was performed using the unweighed pair group method (UPGMA) in the computer program NTSYS-pc. One intergeneric hybrid between Brassica and Raphanus showed 2n=4x=38 chromosomes, of which Raphanus chromosome segment were translocated with B. rapa chromosome.

Keywords

References

  1. Barrett, B.A. and K.K. Kidwell. 1998. AFLP-based genetic diversity assessment among wheat cultivars from the Pacific Northwest. Crop Sci. 38:1261-1271 https://doi.org/10.2135/cropsci1998.0011183X003800050025x
  2. Berner, G.P., S. Bramardi, D. Calvache, E.A. Carbonell, and M.J. Asins. 2003. Applicability of molecular markers in the context of protection of new varieties of cucumber. Plant Breeding 122:146-152 https://doi.org/10.1046/j.1439-0523.2003.00838.x
  3. Cho, Y.S., S.K. Hong, M.T. Song, H.P. Moon, J.H. Lee, and N.S. Kim. 1998. Comparison of genetic variation among rice varieties detected by RAPD, AFLP and SSRP. Korean J. Genetics 20:117-127
  4. Cooke, R.J ., G.M.M. Bredeneijer, M.W. Ganal, R. Peeters, P. Issac, S. Randell, 1. Jacson, M.S. Roder, V. Kozun, K. Wendehake, T. Areschchenkova, M. Dijcks, D. Laborie, L. Bertrand, and B. Vosman. 2003. Assessment of the uniformity of wheat and tomato varieties at DNA microsatellite loci. Euphytica 132:331 -341 https://doi.org/10.1023/A:1025046919570
  5. Chowdhury, AX., P. Srinves, P. Tongpamnak, and P. Saksoong. 2001. Genetic diversity based on morphology and RAPD analysis on vegetable soybean. Korean J. Crop. Sci. 46: 112-120
  6. Dillmann, C, A. Bar-Hen, D. Guerin, A. Characosset, and A. Murigneux. 1997. Comparison of RELP and morphological distances between Zea mays L. inbred lines. Consequences for germplasm protection purposes. Theor. Appl. Genet. 95:92-102 https://doi.org/10.1007/s001220050536
  7. Garcia-Mas, L, M. Oliver, H. Gomez-Paniagua, and M.C. de Vicente. 2000. Comparing AFLP, RAPD and RELP markers for measuring genetic diversity in melon. Theor. Appl. Genet. 101:860-864 https://doi.org/10.1007/s001220051553
  8. Kwon, S.J., S.N. Ahn, H.C. Hong, Y.K Kim, H.G. Hwang, H.C. Choi, and H.P. Moon. 1999. Genetic diversity of Korean japonica rice cultivars. Korean J. Breed. 21:268-275
  9. Kwon, S.J., S.N. Ahn, J.P. Suh, H.C. Hong, Y.K. Kim, H.G. Hwang, H.P. Moon, and H.C. Choi. 2000. Genetic diversity of Korean native rice varieties. Korean J. Breed. 32(2): 186-193
  10. Lee, S.S., W.J. Choi, and J.K. Woo. 2002. Development of a new vegetable crop in XBrassicoraphanus by hybridization of Braasica campestris and Raphanus sativus. J. Kor. Soc. Hort. Sci. 43:693-698
  11. Lefebvre, V., B. Goffinet, J.C. Chauvet, B. Caromel, P. Signoret, R. Brand, and A. Palloix. 2001. Evaluation of genetic distances between pepper inbred lines for cultivar protection purposes: Comparison of AFLP, RAPD, and phenotypic data. Theor. Appl. Genet. 102:741-750 https://doi.org/10.1007/s001220051705
  12. Li, M., C. Zhang, W. Qian, and J. Meng. 2007. Genetic diversity of Brassica species revealed by amplified fragment length polymorphism and simple sequence repeat markers. Hort. Environ. Biotechnol. 48:9-15
  13. Lim, K.B., H. de Jong, T.J. Yang, J.Y. Park, S.l Kwon, J.S. Kim, MH. Lim, J.A. Kim, M Jin, YM Jin, S.H. Kim, Y.P. Lim, lW. Bang, H.l. Kim, and B.S. Park. 2005 Characterization of rDNA and tandem repeats in the heterochromatin of Brassica rapa. Mol. Cells 19:436-444
  14. Panaud, O., X. Chen, and S.R. McCouch. 1996. Development of microsatellite markers and characterization of simple sequence length polymorphism in rice (Oryza sativa L.). Mol. Gen. Genet. 252:597-607
  15. Swabe, K, H. lketani, T. Nunome, T. Kage, and M Hirai. 2002. Isolation and characterization of microsatellite in Brassica rapa L. Theor. Appl. Genet. 104:1092-1098 https://doi.org/10.1007/s00122-002-0875-7
  16. Tam, S.M., C. Mhiri, A. Vogelaar, M. Kerkveld, S.R. Pearce, and M. Grandbastien. 2005. Comparative analyses of genetic diversities within tomato and pepper collections detected by retrotransposon-based SSAP, AFLP and SSR. Theor. Appl. Genet. 110:819-831 https://doi.org/10.1007/s00122-004-1837-z
  17. Tommasini, L., J. Bately, G.M. Arnold, RJ. Cooke, P. Monini, D. Lee, J.R. Law, C. Lowe, C. Moule, M. Trick, and K.J. Edwardw. 2003. The development of multiplex simple sequense repeat markers to complement distinctness, uniformity and stability testing of rape (Bassica napus L.) varieties. Theor. Appl. Genet. 2003:1091-1101
  18. U, N. 1935. Genome analysis in Brassica with special reference to the experimental formation of B. rapa and pecular mode of fertilization. Jpn. J. Bot. 7:389-452.
  19. Vos, P., R. hogers, M. Bleaker, M. Reijanes, T. Van der Lee, M. Homes, A. Frijters, l Pot, J Peleman, M. Kupier, and M. Zabeau. 1995. AFLP: A new technique for DNA fmgerprinting. Nucleic Acids Res. 23:4407-4414 https://doi.org/10.1093/nar/23.21.4407
  20. Warwick, S.l., R.K. Gugel, T. Mcdonald, and K.C. Falk. 2006. Genetic variations of Ethiopian mustard (Brassica carinata A. Braun) germplasm in western Canada. Genetic Resources and Crop Evolution 53:297-312 https://doi.org/10.1007/s10722-004-6108-y
  21. Wu, K.S. and S.D. Tanksley. 1993. Abundance, polymorphism and genetic mapping of micro satellites in rice. Mol. Gen. Genet. 241:225-235 https://doi.org/10.1007/BF00280220
  22. Yang, T.J., J.S. Kim, K.B. Lim, S.J. Kwon, J.I. Kim, M. Jin, J.Y. Park, M.H. Lim, H.I. Kim, and S.H. Kim. 2005. The Korea Brassica genome project: A glimpse of the Brassica genome based on comparativegenome analysis with Arabidopsis. Comp. Func. Genomics 6:138-146 https://doi.org/10.1002/cfg.465
  23. Yang, T.J., J.S. Kim, SJ. Kwon, B.S. Choi, K.B. Lim, J.I. Kim, M. Jin, J.Y .Park, M.H. Lim, H.I .Kim, and B.S. Park. 2006. Sequence level analysis of the diploidization process revealed in the paleohexaploid Brassica rapa genome. Plant Cell 18:1-9 https://doi.org/10.1105/tpc.105.040212
  24. Zhang, J., L. Yingzhi, and Y. Shuxun. 2005. Cleaved AFLP (cAFLP), a modified amplified fragment length polymorphism analysis for cotton. Theor Appl Genet. 111:1385-1395 https://doi.org/10.1007/s00122-005-0070-8
  25. Zhao, J., X. Wang, B. Deng, P. Lou, J. Wu, R. Sun, Z. Xu, J. Vromans, M. Koornneef, and G. Bennema. 2005. Genetic relationship within Brassica rapa as inferred from AFLP fingerprints. Theor. Appl. Genet. 110:1301-1314 https://doi.org/10.1007/s00122-005-1967-y