Coordinated change of a ratio of methylated H3-Iysine 4 or acetylated H3 to acetylated H4 and DNA methylation is associated with tissue-specific gene expression in cloned pig

Kang, Jae-Ku;Park, Kwang-Wook;Chung, Yeon-Gu;You, Jueng-Soo;Kim, Yong-Kee;Lee, Seung-Hyeon;Hong, Seung-Pyo;Choi, Ki-Myung;Heo, Ki-Nam;Seol, Jae-Goo;Lee, Jong-Ho;Jin, Dong-Il;Park, Chang-Sik;Seo, Jeong-Sun;Lee, Hyang-Woo;Han, Jeung-Whan

  • Published : 20070200

Abstract

Various cell types in higher multicellular organisms are genetically homogenous, but are functionally and morphologically heterogeneous due to the differential expression of genes during development, which appears to be controlled by epigenetic mechanisms. However, the exact molecular mechanisms that govern the tissue-specific gene expression are poorly understood. Here, we show that dynamic changes in histone modifications and DNA methylation in the upstream coding region of a gene containing the transcription initiation site determine the tissue-specific gene expression pattern. The tissue-specific expression of the transgene correlated with DNA demethylation at specific CpG sites as well as significant changes in histone modifications from a low ratio of methylated H3- lysine 4 or acetylated H3-lysine 9, 14 to acetylated H4 to higher ratios. Based on the programmed status of transgene silenced in cloned mammalian ear- derived fibroblasts, the transgene could be reprogrammed by change of histone modification and DNA methylation by inhibiting both histone deacetylase and DNA methylation, resulting in high expression of the transgene. These findings indicate that dynamic change of histone modification and DNA methylation is potentially important in the establishment and maintenance of tissue-specific gene expression.

Keywords

References

  1. Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS, Kouzarides T, Schreiber SL. Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA 2002;99:8695-700
  2. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16:6-21 https://doi.org/10.1101/gad.947102
  3. Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNAsilencing in Saccharomyces cerevisiae. Genes Dev 2001; 15:3286-95 https://doi.org/10.1101/gad.940201
  4. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB. Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 1999;21:103-7 https://doi.org/10.1038/5047
  5. Deckert J, Struhl K. Histone acetylation at promoters is differentially affected by specific activators and repressors. Mol Cell Biol 2001;21:2726-35 https://doi.org/10.1128/MCB.21.8.2726-2735.2001
  6. Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004; 429:457-63 https://doi.org/10.1038/nature02625
  7. Fischle W, Wang Y, Allis CD. Histone and chromatin cross-talk. Curr Opin Cell Biol 2003;15:172-83 https://doi.org/10.1016/S0955-0674(03)00013-9
  8. Fry CJ, Peterson CL. Chromatin remodeling enzymes: who's on first? Curr Biol 2001;11:R185-97 https://doi.org/10.1016/S0960-9822(01)00044-6
  9. Futscher BW, Oshiro MM, Wozniak RJ, Holtan N, Hanigan CL, Duan H, Domann FE. Role for DNA methylation in the control of cell type-specific maspin expression. Nat Genet 2002;31: 175-9 https://doi.org/10.1038/ng886
  10. Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI. Establishment and maintenance of a heterochromatin domain. Science 2002;297:2232-7 https://doi.org/10.1126/science.1076466
  11. Hashimshony T, Zhang J, Keshet I, Bustin M, Cedar H. The role of DNA methylation in setting up chromatin structure during development. Nat Genet 2003;34:187-92 https://doi.org/10.1038/ng1158
  12. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33:245-54 https://doi.org/10.1038/ng1089
  13. Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074-80 https://doi.org/10.1126/science.1063127
  14. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science 2001;293:1068-70 https://doi.org/10.1126/science.1063852
  15. Kang YK, Park JS, Koo DB, Choi YH, Kim SU, Lee KK, Han YM. Limited demethylation leaves mosaic-type methylation states in cloned bovine pre-implantation embryos. Embo J 2002;21:1092-100 https://doi.org/10.1093/emboj/21.5.1092
  16. Kimura H, Tada M, Nakatsuji N, Tada T. Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol 2004;24:5710-20 https://doi.org/10.1128/MCB.24.13.5710-5720.2004
  17. Kurdistani SK, Tavazoie S, Grunstein M. Mapping global histone acetylation patterns to gene expression. Cell 2004; 117:721-33 https://doi.org/10.1016/j.cell.2004.05.023
  18. Lachner M, O'Sullivan RJ, Jenuwein T. An epigenetic road map for histone lysine methylation. J Cell Sci 2003;116:2117- 24 https://doi.org/10.1242/jcs.00493
  19. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 2002;3:662-73 https://doi.org/10.1038/nrg887
  20. Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002;18:1427-31 https://doi.org/10.1093/bioinformatics/18.11.1427
  21. Li T, Vu TH, Ulaner GA, Yang Y, Hu JF, Hoffman AR. Activating and silencing histone modifications form independent allelic switch regions in the imprinted Gnas gene. Hum Mol Genet 2004;13:741-50 https://doi.org/10.1093/hmg/ddh081
  22. Liang G, Lin JC, Wei V, Yoo C, Cheng JC, Nguyen CT, Weisenberger DJ, Egger G, Takai D, Gonzales FA, Jones PA. Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci USA 2004;101:7357-62 https://doi.org/10.1073/pnas.0401866101
  23. Magdinier F, D'Estaing SG, Peinado C, Demirci B, Berthet C, Guerin JF, Dante R. Epigenetic marks at BRCA1 and p53 coding sequences in early human embryogenesis. Mol Hum Reprod 2002;8:630-5 https://doi.org/10.1093/molehr/8.7.630
  24. Ng HH, Robert F, Young RA, Struhl K. Targeted recruitment of Set1 histone methylase by elongating Pol II provides a localized mark and memory of recent transcriptional activity. Mol Cell 2003;11:709-19 https://doi.org/10.1016/S1097-2765(03)00092-3
  25. Okabe M, Ikawa M, Kominami K, Nakanishi T, Nishimune Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett 1997;407:313-9 https://doi.org/10.1016/S0014-5793(97)00313-X
  26. Park JS, Lee KR, Kim JC, Lim SH, Seo JA, Lee YW. A hemorrhagic factor (Apicidin) produced by toxic Fusarium isolates from soybean seeds. Appl Environ Microbiol 1999; 65:126-30
  27. Park KW, Cheong HT, Lai L, Im GS, Kuhholzer B, Bonk A, Samuel M, Rieke A, Day BN, Murphy CN, Carter DB, Prather RS. Production of nuclear transfer-derived swine that express the enhanced green fluorescent protein. Anim Biotechnol 2001;12:173-81 https://doi.org/10.1081/ABIO-100108344
  28. Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001;107:323-37 https://doi.org/10.1016/S0092-8674(01)00542-6
  29. Richards EJ, Elgin SC. Epigenetic codes for heterochromatin formation and silencing: rounding up the usual suspects. Cell 2002;108:489-500 https://doi.org/10.1016/S0092-8674(02)00644-X
  30. Sakamoto A, Liu J, Greene A, Chen M, Weinstein LS. Tissuespecific imprinting of the G protein Gsalpha is associated with tissue-specific differences in histone methylation. Hum Mol Genet 2004;13:819-28 https://doi.org/10.1093/hmg/ddh098
  31. Santos-Rosa H, Schneider R, Bannister AJ, Sherriff J, Bernstein BE, Emre NC, Schreiber SL, Mellor J, Kouzarides T. Active genes are tri-methylated at K4 of histone H3. Nature 2002;419:407-11 https://doi.org/10.1038/nature01080
  32. Schaft D, Roguev A, Kotovic KM, Shevchenko A, Sarov M, Shevchenko A, Neugebauer KM, Stewart AF. The histone 3 lysine 36 methyltransferase, SET2, is involved in transcriptional elongation. Nucleic Acids Res 2003;31:2475-82 https://doi.org/10.1093/nar/gkg372
  33. Schneider R, Bannister AJ, Myers FA, Thorne AW, Crane- Robinson C, Kouzarides T. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat Cell Biol 2004;6:73-7 https://doi.org/10.1038/ncb1076
  34. Schubeler D, MacAlpine DM, Scalzo D, Wirbelauer C, Kooperberg C, van Leeuwen F, Gottschling DE, O'Neill LP, Turner BM, Delrow J, Bell SP, Groudine M. The histone modification pattern of active genes revealed through genome- wide chromatin analysis of a higher eukaryote. Genes Dev 2004;18:1263-71 https://doi.org/10.1101/gad.1198204
  35. Solter D. Mammalian cloning: advances and limitations. Nat Rev Genet 2000;1:199-207
  36. Xiao T, Hall H, Kizer KO, Shibata Y, Hall MC, Borchers CH, Strahl BD. Phosphorylation of RNA polymerase II CTD regulates H3 methylation in yeast. Genes Dev 2003;17: 654-63 https://doi.org/10.1101/gad.1055503