Preparation of Fullerene/$TiO_2$ Composite and Its Photocatalytic Effect

Oh, Won-Chun;Jung, Ah-Reum;Ko, Weon-Bae

  • Published : 20071200

Abstract

A Fullerene/TiO2 composite photocatalyst was prepared with titanium (IV) n-butoxide (TNB) by using a MCPBA oxidation method. Since fullerene has absorptive and semiconducting properties, the fullerene/TiO2 composite revealed a sound photo-degradation activity. From the XRD data, a strong carbon peak of fullurene graphene remained and anatase and rutile peaks were observed in the X-ray diffraction patterns for the fullerene/TiO2 composite. The surface properties seen by SEM present a characterization of the texture on the fullerene/TiO2 composite and homogenous compositions in the particles for the titanium sources that were used. For the elemental identification, the EDX spectra showed the presence of C and O with strong Ti peaks. From the MALDI-TOF mass spectrum of the fullerene/TiO2 composite, the observation of the peak due to titanium trace appeared at 878.7 and 894.8 m/z. This is also consistent with the elemental compositions of C60.(TiO2)2 and C60.O(TiO2)2. From the photocatalytic results, the excellent activity of the fullerene/TiO2 composites for organic dye and UV irradiation time could be attributed to both the effects between the photocatalysis of the supported TiO2 and the absorptivity of the fullerene.

Keywords

References

  1. C. D. Stevenson, J. R. Noyes, and R. Reiter, J. Am. Chem. Soc., 122, 12905 (2000)
  2. W. C. Oh, A. R. Jung, and W. B. Ko, Analytical science & Technology, 20, 2, 124 (2007)
  3. W. C. Oh, A. R. Jung, and W. B. Ko, Preparation and characterization of Zn-containing fullerene, Proceeding of International conference on Carbon (CARBON 2007), CD-rom, p.284, 15th-20th July 2007, Seattle, U.S.A.
  4. B. Sun, M. Li, H. Luo, and Z. Shi, Z. Electrochimica Acta, 47, 3545 (2002)
  5. F. Langa, P. Cruz, J. L. Delgado, E. Espildora, M. J. Gomez-Escalonilla, and A. Hoz, J. Mater. Chem., 12, 2130 (2002)
  6. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Academic press, USA, p.587-594 (1996)
  7. H. Dang, M. Levitus, and M. A. Garcia-Garibay, J. Am. Chem. Soc., 124, 136 (2002)
  8. M. Drees, K. Premaratne, W. Graupner, and J. R. Heflin, App. Phy. Lett., 81, 24, 4607 (2002)
  9. M. Kaneko and I. Okura, Photocatalysis: Science and Technology, Kodansha & Springer, p.124, (1999)
  10. W. C. Oh, M. L. Chen, and C. S. Lim, Journal of Ceramic Processing Research, 8, 2, 119 (2007)
  11. W. C. Oh, J. S. Bae, and M. L. Chen, Carbon Science, 7, 4, 259 (2006)
  12. W. C. Oh, J. S. Bae, and M. L. Chen, Korean Chem. Soc., 27, 9, 1423 (2006)
  13. W. C. Oh, J. S. Bae, M. L. Chen, and Y. S. Ko, Analytical Science & Technology, 19, 5, 376 (2006)
  14. T. Akiyama, A. Miyazaki, M. Sutoh, I. Ichinose, T. Kunitake, and S. Yamada, Colloides and Surfaces, 169, 137 (2000)
  15. P. V. Kanmat, M. Gevaert, and K. Vinodgopal, J. Phys. Chem. B, 101, 4422 (1997)
  16. K. Yu, J. Zhao, Y. Tian, M. Jiang, X. Ding, Y. Liu, Y. Zhu, and Z. Wang, Materials Letters, 59, 3563 (2005)
  17. W. C. Oh and M. L. Chen, Carbon Science, 8, 2, 108 (2007)
  18. T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda, and M. Inagaki, J. Mater. Chem., 12, 1391 (2002)
  19. F. J. Maldonado-Hodar, C. Moreno-Castilla, and J. Rivera-Utrilla, Applied Catalysis A: General, 203, 151 (2000)
  20. B. Burger, H. Kuzmany, T. M. Nguyen, H. Sitter, M. Walter, K. Martin, and K. Kullen, Carbon, 36, 661 (1998)
  21. Z. Gu, L. Zhang, J. L. Margrave, V. A. Daveydov, A. V. Rakhmanina, V. Agafonov, and V. N. Khabashesku, Carbon, 43, 2989 (2005)
  22. M. Baibarac, L. Mihut, N. Preda, I. Baltog, J. Y. Mevellec, and S. Lefrant, Carbon, 43, 1 (2005)
  23. M. L. Chen, Y. S. Ko, and W. C. Oh, Carbon Science, 8, 1, 6 (2007)
  24. W. C. Oh, S. B. Han, and J. S. Bae, Analytical science & Technology, 20, 4, 279 (2007)
  25. R. P. Schwarzenbach, P. M. Gschwend, and D. M. Imboden, Environmental organic chemistry, 2nd Ed., John Wily and Sons (2002)