Protective effects of fustin, a flavonoid from Rhus verniciflua Stokes, on 6-hydroxydopamine-induced neuronal cell death

Park, Byung-Chul;Lee, Yong-Soo;Park, Hee-Juhn;Kwak, Mi-Kyoung;Yoo, Bong-Kyu;Kim, Joo-Young;Kim, Jung-Ae

  • Published : 20070600

Abstract

6-Hydroxydopamine (6-OHDA) is a neurotoxin and is commonly used to generate experimental models of Parkinsons disease (PD). In this study, we investi-gated the signaling molecules involved in the 6- OHDA-induced cell death using a neuronal cate-cholaminergic cell line (SK-N-SH cells), and the protective effect of fustin, a flavonoid from Rhus verniciflua Stokes, on 6-OHDA-induced neuronal y increased levels of reac-tive oxygen species (ROS), intracelular Ca2+ ([Ca2+]i), and p38 phosphorylation. In addition, this ROS increase by 6-OHDA was reduced by pretreatment with N-acetylcysteine (NAC), a free radical scavenger, but not by bis-(o-aminophenoxy)- ethane-N,N,N,N- tetraacetic acid (BAPTA), a Ca2+ chelator. However, the [Ca2+]i increase induced by 6-OHDA was su-ppressed by NAC. Moreover, pretreatment with NAC or BAPTA significantly prevented the 6-OHDA- Bcl-2 ratio, and caspase-3 activity. Although 6- OHDA-increased phosphorylation of p38 was pre-vented by NAC or BAPTA, inhibition of p38 by SB203580 did not suppress ROS, Bax/Bcl-2 ratio, or caspase-3 activity increases, and only partially prevented 6-OHDA-induced cell death, thus demon-strating that p38 activation is a component of a signaling pathway leading to the initiation of 6-OHDA-induced cell death, which acts in parallel with an ROS-Ca2+-Bcl-2-caspase-3 pathway. More-over, fustin not only suppressed 6-OHDA-induced cell death in a concentration-dependent manner but also blocked 6-OHDA-induced increases in ROS, [Ca2+]i, Bax/Bcl-2 ratio, caspase-3 activity, and p38 phosphorylation. These results suggest that fustin exerts neuroprotection against 6-OHDA-induced cell death.

Keywords

References

  1. Andrew R, Watson DG, Best SA, Midgley JM, Wenlong H, Petty RK. The determination of hydroxydopamines and other trace amines in the urine of Parkinsonian patients and normal controls. Neurochem Res 1993;18:1175-7 https://doi.org/10.1007/BF00978370
  2. Armstrong JS. The role of the mitochondrial permeability transition in cell death. Mitochondrion 2006;6:225-34 https://doi.org/10.1016/j.mito.2006.07.006
  3. Auchon D, Jiang X, Morgan D, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002;9:423-32 https://doi.org/10.1016/S1097-2765(02)00442-2
  4. Bae JH, Park JW, Kwon TK. Ruthenium red, inhibitor of mitochondrial $Ca^{2+}$ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular $Ca^{2+}$ depletion and cytochrome c release. Biochem. Biophys Res Commun 2003;303:1073-9 https://doi.org/10.1016/S0006-291X(03)00479-0
  5. Beal MF. Experimental models of Parkinson's disease. Nat Rev Neurosci 2001;2:325-34
  6. Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK. Glutathione, iron and Parkinson's disease. Biochem Pharmacol 2002;64:1037-48 https://doi.org/10.1016/S0006-2952(02)01174-7
  7. Borner C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 2003;39:615-47 https://doi.org/10.1016/S0161-5890(02)00252-3
  8. Bruce-Keller AJ, Begley JG, Fu W, Butterfield DA, Bredesen DE, Hutchins JB, Hensley K, Mattson MP. Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid beta-peptide. J Neurochem 1998;70:31-39 https://doi.org/10.1046/j.1471-4159.1998.70010031.x
  9. Cassarino DS, Halvorsen EM, Swerdlow RH, Abramova NN, Parker WD, Jr Sturgill TW, Bennett JP. Jr Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson's disease. J Neurochem 2000;74:1384-92 https://doi.org/10.1046/j.1471-4159.2000.0741384.x
  10. Choi J, Yoon BJ, Han YN, Lee KT, Ha J, Jung HJ, Park HJ. Antirheumatoid arthritis effect of Rhus verniciflua and of the active component, sulfuretin. Planta Med 2003;69:899-904 https://doi.org/10.1055/s-2003-45097
  11. Choi WS, Yoon SY, Oh TH, Choi EJ, O'Malley KL, Oh YJ. Two distinct mechanisms are involved in 6-hydroxydopamine- and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J Neurosci Res 1999;57:86-94 https://doi.org/10.1002/(SICI)1097-4547(19990701)57:1<86::AID-JNR9>3.0.CO;2-E
  12. Choi WS, Eom DS, Han BS, Kim WK, Han BH, Choi EJ, Oh TH, Markelonis G J, Cho JW, Oh YJ. Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase- 8- and -9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem 2004;279:20451-60 https://doi.org/10.1074/jbc.M311164200
  13. Chun HS, Gibson G.E, DeGiorgio LA, Zhang H, Kidd VJ, Son JH. Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism. J Neurochem 2001;76:1010-21 https://doi.org/10.1046/j.1471-4159.2001.00096.x
  14. Cohen G, Farooqui R, Kesler N. Parkinson disease: a new link between monoamine oxidase and mitochondrial electron flow. Proc Natl Acad Sci U S A 1997;94:4890-4894 https://doi.org/10.1073/pnas.94.10.4890
  15. Curtius HC, Wolfensberger M, Steinmann B, Redweik U, Siegfried J. Mass fragmentography of dopamine and 6-hydroxydopamine. Application to the determination of dopamine in human brain biopsies from the caudate nucleus. J Chromatography 1974;99:529-40 https://doi.org/10.1016/S0021-9673(00)90882-3
  16. Danielczyk W, Streifler M, Konradi C, Riederer P, Moll G.. Platelet MAO-B activity and the psychopathology of Parkinson's disease, senile dementia and multi-infarct dementia. Acta Psychiatr Scand 1998;78:730-6 https://doi.org/10.1111/j.1600-0447.1988.tb06412.x
  17. Dauer W, Przedborski S. Parkinson's disease: mechanisms and models. Neuron 2003;39:889-909 https://doi.org/10.1016/S0896-6273(03)00568-3
  18. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science 2003;302:819-22 https://doi.org/10.1126/science.1087753
  19. Di Virgilio F, Fasolato C, Steinberg TH. Inhibitors of membrane transport system for organic anions block fura-2 excretion from PC12 and N2A cells. J Biol Chem 1998;256:959-63
  20. Ferrer I, Blanco R, Carmona M, Puig B, Barrachina M, Gomez C, Ambrosio S. Active, phosphorylation-dependent mitogenactivated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson's disease and Dementia with Lewy bodies. J Neural Transm 2001;108:1383-96 https://doi.org/10.1007/s007020100015
  21. Floor E, Wetzel MG. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J Neurochem 1998;70:268-75 https://doi.org/10.1046/j.1471-4159.1998.70010268.x
  22. Froissard P, Monrocq H, Duval D. Role of glutathione metabolism in the glutamate-induced programmed cell death of neuronal-like PC12 cells. Eur J Pharmacol 1997;326:93-9 https://doi.org/10.1016/S0014-2999(97)00155-6
  23. Glinka Y, Gassen M, Youdim MB. Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm 1997;50(Suppl):55-66
  24. Glinka YY, Youdim MB. Inhibition of mitochondrial complexes I and IV by 6-hydroxydopamine. European Journal of Pharmacology 1995;292:329-32
  25. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-12 https://doi.org/10.1126/science.281.5381.1309
  26. Gross A, Yin XM, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 1999;274:1156-63 https://doi.org/10.1074/jbc.274.2.1156
  27. Hattori N, Tanaka M, Ozawa T, Mizuno Y. Immunohistochemical studies on complexes I, II, III, and IV of mitochondria in Parkinson's disease. Ann Neurol 1991;30:563-71 https://doi.org/10.1002/ana.410300409
  28. Hochman A, Sternin H, Gorodin S, Korsmeyer S, Ziv I, Melamed E, Offen D. Enhanced oxidative stress and altered antioxidants in brains of Bcl-2-deficient mice. J Neurochem 1998;71:741-8 https://doi.org/10.1046/j.1471-4159.1998.71020741.x
  29. Hockenbery D, Nunez G, Milliman C, Schreiber RD, Korsmeyer SJ. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 1990;348:334-6 https://doi.org/10.1038/348334a0
  30. Jambrina E, Alonso R, Alcalde M, Rodriguez MC, Serrano A, Martinez AC, Garcia-Sancho J, Izquierdo M. Calcium influx through receptor-operated channel induces mitochondriatriggered paraptotic cell death. J Biol Chem 2003;278:14134-45 https://doi.org/10.1074/jbc.M211388200
  31. Kim JA, Kang YS, Kim YO, Lee SH, Lee YS. Role of $Ca^{2+}$ influx in the tert-butyl hydroperoxide-induced apoptosis of HepG2 human hepatoblastoma cells. Exp Mol Med 1998; 30:137-44 https://doi.org/10.1038/emm.1998.20
  32. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997;275:1132-6 https://doi.org/10.1126/science.275.5303.1132
  33. Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ, Schlesinger PH. Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ 2000;7:1166-73 https://doi.org/10.1038/sj.cdd.4400783
  34. Kumar R, Agarwal AK, Seth PK. Free radical-generated neurotoxicity of 6-hydroxydopamine. J Neurochem 1995;64:1703-7 https://doi.org/10.1046/j.1471-4159.1995.64041703.x
  35. Kwon KB, Kim EK, Shin BC, Seo EA, Yang JY, Ryu DG. Herba houttuyniae extract induces apoptotic death of human promyelocytic leukemia cells via caspase activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release. Exp Mol Med 2003;35:91-7 https://doi.org/10.1038/emm.2003.13
  36. Lee WT, Yin HS, Shen YZ. The mechanisms of neuronal death produced by mitochondrial toxin 3-nitropropionic acid: the roles of N-methyl-D-aspartate glutamate receptors and mitochondrial calcium overload. Neuroscience 2002;112:707-16 https://doi.org/10.1016/S0306-4522(02)00097-0
  37. Lotharius J, Dugan LL, O'Malley KL. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 1999;19:1284-93 https://doi.org/10.1523/JNEUROSCI.19-04-01284.1999
  38. Lotharius JO, Malley KL. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation. A novel mechanism of toxicity. J Biol Chem 2000;275:38581-8 https://doi.org/10.1074/jbc.M005385200
  39. Mielke K, Herdegen T. JNK and p38 stress kinases-degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol 2000;61:45-60 https://doi.org/10.1016/S0301-0082(99)00042-8
  40. Mladenovic A, Perovic M, Raicevic N, Kanazir S, Rakic L, Ruzdijic S. 6-Hydroxydopamine increases the level of TNFalpha and bax mRNA in the striatum and induces apoptosis of dopaminergic neurons in hemiparkinsonian rats. Brain Res 2004;996:237-45 https://doi.org/10.1016/j.brainres.2003.10.035
  41. Ogawa N, Asanuma MK, Kondo Y, Nishibayashi S, Mori A. Reduced choline acetyltransferase activity and muscarinic M1 receptor levels in aged Fisher 344 rat brains did not parallel their respective mRNA levels. Brain Res 1994;658:87-92 https://doi.org/10.1016/S0006-8993(09)90013-0
  42. Ouyang M, Shen X. Critical role of ASK1 in the 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem 2006;97:234-44 https://doi.org/10.1111/j.1471-4159.2006.03730.x
  43. Park KY, Jung GO, Lee KT, Choi J, Choi MY, Kim GT, Jung HJ, Park HJ. Antimutagenic activity of flavonoids from the heartwood of Rhus verniciflua. J Ethnopharmacol 2004;90:73-9 https://doi.org/10.1016/j.jep.2003.09.043
  44. Petit PX, Susin SA, Zamzami N, Mignotte B, Kroemer G. Mitochondria and programmed cell death: back to the future. FEBS Lett 1996;396:7-13 https://doi.org/10.1016/0014-5793(96)00988-X
  45. Petit PX, Goubern M, Diolez P, Susin SA, Zamzami N, Kroemer G. Disruption of the outer mitochondrial membrane as a result of large amplitude swelling: the impact of irreversible permeability transition. FEBS Lett 1998;426:111-6 https://doi.org/10.1016/S0014-5793(98)00318-4
  46. Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM. Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 1995;67:31-64
  47. Reichman N, Porteous CM, Murphy MP. Cyclosporin A blocks 6-hydroxydopamine-induced efflux of $Ca^{2+}$ from mitochondria without inactivating the mitochondrial inner-membrane pore. Biochem J 1994;297:151-5 https://doi.org/10.1042/bj2970151
  48. Reynolds IJ. Mitochondrial membrane potential and the permeability transition in excitotoxicity. Ann NY Acad Sci 1999;893:33-41 https://doi.org/10.1111/j.1749-6632.1999.tb07816.x
  49. Richter C, Frei B. $Ca^{2+}$ release from mitochondria induced by prooxidants. Free Radic. Biol Med 1988;4:365-75 https://doi.org/10.1016/0891-5849(88)90088-3
  50. Saporito MS, Brown EM, Miller MS, Carswell S. CEP-1347/KT-7515, an inhibitor of c-jun N-terminal kinase activation, attenuates the 1-methyl-4-phenyl tetrahydropyridinemediated loss of nigrostriatal dopaminergic neurons in vivo. J Pharmacol Exp Ther 1999;288:421-7
  51. Saporito MS, Thomas BA, Scott RW. MPTP activates c-Jun NH(2)-terminal kinase (JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo. J Neurochem 2000;75:1200-8 https://doi.org/10.1046/j.1471-4159.2000.0751200.x
  52. Sauer H, Oertel WH. Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 1994;59:401-15 https://doi.org/10.1016/0306-4522(94)90605-X
  53. Seitz H, Stinner D, Eikmann T, Herr C, Roosli M. Electromagnetic hypersensitivity (EHS) and subjective health complaints associated with electromagnetic fields of mobile phone communication--a literature review published between 2000 and 2004. Sci Total Environ 2005;349:45-55 https://doi.org/10.1016/j.scitotenv.2005.05.009
  54. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 2002;22:7006-15 https://doi.org/10.1523/JNEUROSCI.22-16-07006.2002
  55. Shimizu E, Hashimoto K, Komatsu N, Iyo M. Roles of endogenous glutathione levels on 6-hydroxydopamine-induced apoptotic neuronal cell death in human neuroblastoma SK-N-SH cells. Neuropharmacol 2002;43:434-43 https://doi.org/10.1016/S0028-3908(02)00108-9
  56. Skulachev VP. Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett 1996;397:7-10 https://doi.org/10.1016/0014-5793(96)00989-1
  57. Soto-Otero R, Mendez-Alvarez E, Hermida-Ameijeiras A, Munoz-Patino AM, Labandeira-Garcia JL. Autoxidation and neurotoxicity of 6-hydroxydopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson's disease. J Neurochem 2000;74:1605-12 https://doi.org/10.1046/j.1471-4159.2000.0741605.x
  58. Tatton NA. Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson's disease. Exp Neurol 2000;166:29-43 https://doi.org/10.1006/exnr.2000.7489
  59. Tsao CW, Cheng JT, Lin YS. Down-regulation of Bcl-2, activation of caspases, and involvement of reactive oxygen species in 6-hydroxydopamine-induced thymocyte apoptosis. Neuroimmunomodulation 2002-2003;10:328-36 https://doi.org/10.1159/000071473
  60. Vroegop SM, Decker DE, Buxser SE. Localization of damage induced by reactive oxygen species in cultured cells. Free Radic Biol Med 1995;18:141-51 https://doi.org/10.1016/0891-5849(94)00107-U
  61. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995;270:1326-31 https://doi.org/10.1126/science.270.5240.1326
  62. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997;275:1129-32 https://doi.org/10.1126/science.275.5303.1129