DOI QR코드

DOI QR Code

Detection of Antistaphylococcal and Toxic Compounds by Biological Assay Systems Developed with a Reporter Staphylococcus aureus Strain Harboring a Heat Inducible Promoter - lacZ Transcriptional Fusion

  • Chanda, Palas Kumar (Department of Biochemistry, Bose Institute) ;
  • Ganguly, Tridib (Department of Biochemistry, Bose Institute) ;
  • Das, Malabika (Department of Biochemistry, Bose Institute) ;
  • Lee, Chia Yen (Department of Microbiology and Immunology, University of Arkansas for Medical Sciences) ;
  • Luong, Thanh T. (Department of Microbiology and Immunology, University of Arkansas for Medical Sciences) ;
  • Sau, Subrata (Department of Biochemistry, Bose Institute)
  • Published : 2007.11.30

Abstract

Previously it was reported that promoter of groES-groEL operon of Staphylococcus aureus is induced by various cellwall active antibiotics. In order to exploit the above promoter for identifying novel antistaphylococcal drugs, we have cloned the promoter containing region ($P_g$) of groES-groEL operon of S. aureus Newman and found that the above promoter is induced by sublethal concentrations of many antibiotics including cell-wall active antibiotics. A reporter S. aureus RN4220 strain (designated SAU006) was constructed by inserting the $P_g$-lacZ transcriptional fusion into its chromosome. Agarose-based assay developed with SAU006 shows that $P_g$ in single-copy is also induced distinctly by different classes of antibiotics. Data indicate that ciprofloxacin, rifampicin, ampicillin, and cephalothin are strong inducers, whereas, tetracycline, streptomycin and vancomycin induce the above promoter weakly. Sublethal concentrations of ciprofloxacin and ampicilin even have induced $P_g$ efficiently in microtiter plate grown SAU006. Additional studies show for the first time that above promoter is also induced weakly by arsenate salt and hydrogen peroxide. Taken together, we suggest that our simple and sensitive assay systems with SAU006 could be utilized for screening and detecting not only novel antistaphylococcal compounds but also different toxic chemicals.

Keywords

References

  1. Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A. and Struhl, K. (1998) DNA-Protein Interactions In Current Protocols in Molecular Biology, Ch. 12, Massachusetts General Hospital, Harvard Medical School, John Wiley & Sons, Inc., USA.
  2. Bianchi, A. A. and Baneyx, F. (1999) Stress responses as a tool to detect and characterize the mode of action of antibacterial agents. Appl. Environ. Microbiol. 65, 5023-5027.
  3. Collins, L. A., Torrero, M. N., Franzblau, S. G. (1998) Green fluorescent protein reporter microplate assay for high-throughput screening of compounds against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 42, 344-347.
  4. Deb, D. K., Srivastava, K. K., Srivastava, R. and Srivastava, B. S. (2000) Bioluminescent Mycobacterium aurum expressing firefly luciferase for rapid and high throughput screening of antimycobacterial drugs in vitro and in infected macrophages. Biochem. Biophys. Res. Commun. 279, 457-461. https://doi.org/10.1006/bbrc.2000.3957
  5. Draghi, D. C., Sheehan, D. F., Hogan, P. and Sahm, D. F. (2006) Current antimicrobial resistance profiles among methicillinresistant Staphylococcus aureus encountered in the outpatient setting. Diagn. Microbiol. Infect. Dis. 55, 129-133. https://doi.org/10.1016/j.diagmicrobio.2006.01.003
  6. Feiz, V. and Redline, D. E. (2007) Infectious scleritis after pars plana vitrectomy because of methicillin-resistant Staphylococcus aureus resistant to fourth-generation fluoroquinolones. Cornea 26, 238-240.
  7. Fraimow, H. S. and Courvalin, P. (2000) Resistance to Glycopeptides in Gram-Positive Pathogens; in Gram positive Pathogens, Fischetti, V. A. (ed.), pp. 621-634, ASM Washington D.C., USA.
  8. Jiang, W., Jones, P. and Inouye, M. (1993) Chloramphenicol induces the transcription of the major cold shock gene of Escherichia coli, cspA. J. Bacteriol. 175, 5824-5828. https://doi.org/10.1128/jb.175.18.5824-5828.1993
  9. Kemp, E. H., Sammons, R. L., Moir, A., Sun, D. and Setlow, P. (1991) Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis 168. J. Bacteriol. 173, 4646-4652. https://doi.org/10.1128/jb.173.15.4646-4652.1991
  10. Kirsch, D. R., Lai, M. H., McCullough, J. and Gillum, A. M. (1991) The use of beta-galactosidase gene fusions to screen for antibacterial antibiotics. J. Antibiot. (Tokyo). 44, 210-217. https://doi.org/10.7164/antibiotics.44.210
  11. Kreiswirth, B. N., Lofdahl, S., Betley, M. J., O'Reilly, M., Shlievert, P. M., Bergdoll, M. S. and Novick. R. P. (1983) The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709-712. https://doi.org/10.1038/305709a0
  12. Kuroda, M., Kobayashi, D., Honda, K., Hayashi, H. and Ohta, T. (1999) The hsp operons are repressed by the hrc37 of the hsp70 operon in Staphylococcus aureus. Microbiol. Immunol. 43, 19-27. https://doi.org/10.1111/j.1348-0421.1999.tb02368.x
  13. Lee, C. Y., Buranen, S. L. and Ye, Z. H. (1991) Construction of single-copy integration vectors for Staphylococcus aureus. Gene 103, 101-105. https://doi.org/10.1016/0378-1119(91)90399-V
  14. Lin, J. T., Connelly, M. B., Amolo, C., Otani, S. and Yaver, D. S. (2005) Global transcriptional response of Bacillus subtilis to treatment with subinhibitory concentrations of antibiotics that inhibit protein synthesis. Antimicrob. Agents Chemother. 49, 1915-1926. https://doi.org/10.1128/AAC.49.5.1915-1926.2005
  15. Luong, T. T. and Lee, C. Y. (2006) The arl locus positively regulates Staphylococcus aureus type 5 capsule via an mgrA-dependent pathway. Microbiology 152, 3123-3231. https://doi.org/10.1099/mic.0.29177-0
  16. Maisetta, G., Batoni, G., Pardini, M., Boschi, A., Bottai, D., Esin, S., Campa, M., Senesi, S. (2001) Use of a recombinant strain of Mycobacterium avium expressing beta-galactosidase to evaluate the activities of antimycobacterial agents inside macrophages. Antimicrob. Agents Chemother. 45, 356-358. https://doi.org/10.1128/AAC.45.1.356-358.2001
  17. Miller, J. M. (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor. New York, USA.
  18. Ng, W. L., Kazmierczak, K. M., Robertson, G. T., Gilmour, R. and Winkler, M. E. (2003) Transcriptional regulation and signature patterns revealed by microarray analyses of Streptococcus pneumoniae R6 challenged with sublethal concentrations of translation inhibitors. J. Bacteriol. 185, 359-370. https://doi.org/10.1128/JB.185.1.359-370.2003
  19. Ohta, T., Honda, K., Kuroda, M., Saito, K. and Hayashi, H. (1993) Molecular characterization of the gene operon of heat shock proteins HSP60 and HSP10 in methicillin-resistant Staphylococcus aureus. Biochem. Biophys. Res. Commun. 193, 730-737. https://doi.org/10.1006/bbrc.1993.1686
  20. Osburne, M. S., Maiese, W. M. and Greenstein, M. (1993) An assay for the detection of bacterial DNA gyrase inhibitors. J. Antibiot. 46, 1764-1766. https://doi.org/10.7164/antibiotics.46.1764
  21. Picazo, J. J., Betriu, C., Rodriguez-Avial, I., Culebras, E., Gomez, M., Lopez, F. and Grupo VIRA (2006) [Antimicrobial resistance surveillance: VIRA STUDY 2006]. Enferm. Infecc. Microbiol. Clin. 24, 617-628. https://doi.org/10.1157/13095373
  22. Projan, S. J. (2000) Antibiotic resistance in the staphylococci; in Gram positive Pathogens, Fischetti, V. A. (ed.), pp. 463-470, ASM Washington D.C., USA.
  23. Qiu, J., Zhou, D., Han, Y., Zhang, L., Tong, Z., Song, Y., Dai, E., Li, B., Wang, J., Guo, Z., Zhai, J., Du, Z., Wang, X. and Yang, R. (2005) Global gene expression profile of Yersinia pestis induced by streptomycin. FEMS Microbiol. Lett. 243, 489-496. https://doi.org/10.1016/j.femsle.2005.01.018
  24. Qoronfleh, M. W., Streips, U. N. and Wilkinson, B. J. (1990) Basic features of the staphylococcal heat shock response. Antonie Van Leeuwenhoek 58, 79-86. https://doi.org/10.1007/BF00422721
  25. Sambrook, J. and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., Cold Spring Harbor Laboratory Press, CSH, New York, USA.
  26. Sau, S., Sun, J. and Lee, C. Y. (1997) Molecular characterization and transcriptional analysis of type 8 capsule genes in Staphylococcus aureus. J. Bacteriol. 179, 1614-1621. https://doi.org/10.1128/jb.179.5.1614-1621.1997
  27. Schenk, S. and Laddaga, R. A. (1992) Improved method for electroporation of Staphylococcus aureus. FEMS Microbiol. Lett. 73, 133-138.
  28. Shapiro, E. and Baneyx, F. (2002) Stress-based identification and classification of antibacterial agents: second-generation Escherichia coli reporter strains and optimization of detection. Antimicrob. Agents Chemother. 46, 2490-2397. https://doi.org/10.1128/AAC.46.8.2490-2497.2002
  29. Shaw, K. J., Miller, N., Liu, X., Lerner, D., Wan, J., Bittner, A. and Morrow, B. J. (2003) Comparison of the changes in global gene expression of Escherichia coli induced by four bactericidal agents. J. Mol. Microbiol. Biotechnol. 5, 105-122. https://doi.org/10.1159/000069981
  30. Shawar, R. M., Humble, D. J., Van Dalfsen, J. M., Stover, C. K., Hickey, M. J., Steele, S., Mitscher, L. A. and Baker, W. (1997) Rapid screening of natural products for antimycobacterial activity by using luciferase-expressing strains of Mycobacterium bovis BCG and Mycobacterium intracellulare. Antimicrob. Agents Chemother. 41, 570-574.
  31. Singh, V. K., Jayaswal, R. K. and Wilkinson, B. J. (2001) Cell wallactive antibiotic induced proteins of Staphylococcus aureus identified using a proteomic approach. FEMS Microbiol. Lett. 199, 79-84.
  32. Tenover, F. C. and Gaynes, R. P. (2000). 'The Epidemiology of Staphylococcus Infections' in Gram positive Pathogens, Fischetti, V. A. (ed.), pp. 414-421, ASM Washington D.C., USA.
  33. Ulijasz, A. T, Grenader, A. and Weisblum, B. (1996) A vancomycininducible lacZ reporter system in Bacillus subtilis: induction by antibiotics that inhibit cell wall synthesis and by lysozyme. J. Bacteriol. 178, 6305-6309. https://doi.org/10.1128/jb.178.21.6305-6309.1996
  34. VanBogelen, R. A. and Neidhardt, F. C. (1990) Ribosomes as sensors of heat and cold shock in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 5589-5593.
  35. Yamaguchi, Y., Tomoyasu, T., Takaya, A., Morioka, M. and Yamamoto, T. (2003) Effects of disruption of heat shock genes on susceptibility of Escherichia coli to fluoroquinolones. BMC Microbiol. 12, 3-16.
  36. Youngman, P. (1990) Use of transposons and Integrational vectors for Mutagenesis and construction of Gene Fusions in Bacillus species in Molecular Biological Methods for Bacillus, (Harwood, C. R. and Cutting, S. M. (eds), pp. 221-266, John Wiley & Sons, New York, USA.
  37. Zafer, A. A., Taylor, Y. E., Sattar, S. A. (2001) Rapid screening method for Mycobactericidal activity of chemical germicides that uses Mycobacterium terrae expressing a green fluorescent protein gene. Appl. Environ. Microbiol. 67, 1239-1245. https://doi.org/10.1128/AEM.67.3.1239-1245.2001
  38. Zukowski, M. M., Gaffney, D. F., Speck, D., Kauffmann, M., Findeli, A., Wisecup, A. and Lecocq, J. P. (1983) Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc. Natl. Acad. Sci. USA 80, 1101-1105. https://doi.org/10.1073/pnas.80.4.1101

Cited by

  1. Stabilization of the primary sigma factor of Staphylococcus aureus by core RNA polymerase vol.43, pp.3, 2010, https://doi.org/10.5483/BMBRep.2010.43.3.176
  2. Investigations on the amalgamation of gold nanorods by iodine and the detection of tetracycline vol.52, pp.2, 2009, https://doi.org/10.1007/s11426-008-0127-z
  3. Antibiotics, arsenate and H2O2induce the promoter ofStaphylococcus aureus cspCgene more strongly than cold vol.49, pp.2, 2009, https://doi.org/10.1002/jobm.200800065
  4. A study on the aquatic eco-risk assessment of antibiotics treated by radiation vol.26, pp.3, 2012, https://doi.org/10.11001/jksww.2012.26.3.373