DOI QR코드

DOI QR Code

The Effect of Bacterial Inoculants and a Chemical Preservative on the Fermentation and Aerobic Stability of Whole-crop Cereal Silages

  • Filya, Ismail (Department of Animal Science, Faculty of Agriculture, Uludag University) ;
  • Sucu, Ekin (Department of Animal Science, Faculty of Agriculture, Uludag University)
  • Received : 2006.04.25
  • Accepted : 2006.08.01
  • Published : 2007.03.01

Abstract

Three microorganisms and one chemical preservative were tested for their effects on the fermentation and aerobic stability of whole-crop wheat, sorghum and maize silages. Wheat at the early dough stage, sorghum at the late milk stage and maize at the one-third milk line stage were harvested and ensiled in 1.5-l anaerobic jars untreated or after the following treatments: control (no additives); Lactobacillus plantarum (LP) at $1.0{\times}10^6$ colony-forming units (CFU)/g of fresh forage; L. buchneri (LB) at $1.0{\times}10^6$ CFU/g; Propionibacterium acidipropionici (PA) at $1.0{\times}10^6$ CFU/g; and a formic acid-based preservative (FAP) at 3 ml/kg of fresh forage weight. Three jars per treatment were sampled on d 90 after ensiling, for chemical and microbiological analysis. At the end of the ensiling period, 90 d, the silages were subjected to an aerobic stability test lasting 5 d. In this test, $CO_2$ produced during aerobic exposure was measured along with chemical and microbiological parameters which serve as spoilage indicators. The silages inoculated with LP had higher concentration of lactic acid compared with the controls and the other treated silages (p<0.05). The controls and LP-inoculated silages spoiled upon aerobic exposure faster than LB, PA and FAP-treated silages. The controls and LP-inoculated silages spoiled upon aerobic exposure faster than LB, PA and FAP-treated silages due to more $CO_2$ production (p<0.05) in these two groups and development of yeasts unlike the other groups. In the experiment, the silages treated with LB, PA and FAP were stable under aerobic conditions. However, the numbers of yeasts was higher in the LP-inoculated wheat, sorghum and maize silages compared with the LB, PA and FAP-treated silages. The LB, PA and FAP improved the aerobic stability of the silages by causing more extensive heterolactic fermentation that resulted in the silages with high levels of acetic and propionic acid. The use of LB, PA and FAP as silage additives can improve the aerobic stability of whole-crop wheat, sorghum and maize silages by inhibition of yeast activity.

Keywords

References

  1. Adesogan, A. T. and S. B. Salawu. 2002. The effect of different additives on the fermentation quality, aerobic stability and in vitro digestibility of pea/wheat bi-crop silages containing contrasting pea to wheat ratios. Grass Forage Sci. 57:25-32. https://doi.org/10.1046/j.1365-2494.2002.00298.x
  2. Ando, S., M. Ishida, S. Oshio and O. Tanaka. 2006. Effects of isolated and commercial lactic acid bacteria on the silage quality, digestibility, voluntary intake and ruminal fluid characteristics. Asian-Aust. J. Anim. Sci. 19:386-389. https://doi.org/10.5713/ajas.2006.386
  3. AOAC. 1990. Official Methods of Analysis. 15th edn. Association of Official Analytical Chemists. Arlington, Virginia
  4. Ashbell, G., Z. G. Weinberg, A. Azrieli, Y. Hen and B. Horev. 1991. A simple system to study the aerobic deterioration of silages. Can. Agric. Eng. 33:171-175.
  5. Ashbell, G., Z. G. Weinberg, Y. Hen and I. Filya. 2002. The effects of temperature on the aerobic stability of wheat and corn silages. J. Ind. Microbiol. Biotechnol. 28:261-263. https://doi.org/10.1038/sj.jim.7000237
  6. Bolsen, K. K., D. R. Bonilla, G. L. Huck, M. A. Young and R. A. Hart-Thakur. 1996. Effect of propionic acid bacterial inoculant on fermentation and aerobic stability of whole-plant corn silage. In: Report of Progress of Kansas State University Agricultural Experiment Station, Kansas State University, Manhattan, Kansas. pp. 78-81.
  7. Davies, D. R., R. J. Merry, A. P. Williams, E. L. Bakewell, D. K. Leemans and J. K. S. Tweed. 1998. Proteolysis during ensilage of forages varying in soluble sugar content. J. Dairy Sci. 81:444-453. https://doi.org/10.3168/jds.S0022-0302(98)75596-1
  8. Dawson, T. E., R. S. Rust and M. T. Yokoyama. 1998. Improved fermentation and aerobic stability of ensiled, high moisture corn with the use of Propionibacterium acidipropionici. J. Dairy Sci. 81:1015-1021. https://doi.org/10.3168/jds.S0022-0302(98)75663-2
  9. Driehuis, F. and P. G. Van Wikselaar. 1996. Effects of formic, acetic or propionic acid to maize silage and low dry matter grass silage on the microbial flora and aerobic stability. In: Proceedings of the 11th International Silage Conference. University of Wales, Aberystwyth, Wales. pp. 256-257.
  10. Driehuis, F., S. J. W. H. Oude Elferink and S. F. Spoelstra. 1999. Anaerobic lactic acid degradation during ensilage of whole crop maize inoculated with Lactobacillus buchneri inhibits yeast growth and improves aerobic stability. J. Appl. Microbiol. 87:585-594.
  11. Driehuis, F., S. J. W. H. Oude Elferink and P. G. Van Wikselaar. 2001. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri, with or without homofermentative lactic acid bacteria. Grass Forage Sci. 56:330-343. https://doi.org/10.1046/j.1365-2494.2001.00282.x
  12. Dubois, M., K. A. Giles, J. K. Hamilton, P. A. Rebes and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356. https://doi.org/10.1021/ac60111a017
  13. Filya, I. 2002a. The effects of lactic acid bacteria and lactic acid bacteria+enzyme mixture silage inoculants on maize silage. Turk J. Vet. Anim. Sci. 26:679-687.
  14. Filya, I. 2002b. The effects of lactic acid bacterial inoculants on the fermentation, aerobic stability and in situ rumen degradability characteristics of maize and sorghum silages. Turk J. Vet. Anim. Sci. 26:815-823.
  15. Filya, I. 2003a. The effect of Lactobacillus buchneri and Lactobacillus plantarum on the fermentation, aerobic stability, and ruminal degradability of low dry matter corn and sorghum silages. J. Dairy Sci. 86:3575-3581. https://doi.org/10.3168/jds.S0022-0302(03)73963-0
  16. Filya, I. 2003b. The effect of Lactobacillus buchneri, with or without homofermentative lactic acid bacteria, on the fermentation, aerobic stability and ruminal degradability of wheat, sorghum and maize silages. J. Appl. Microbiol. 95:1080-1086. https://doi.org/10.1046/j.1365-2672.2003.02081.x
  17. Filya, I., E. Sucu and A. Karabulut. 2004. The effect of Propionibacterium acidipropionici, with or without Lactobacillus plantarum, on the fermentation and aerobic stability of wheat, sorghum and maize silages. J. Appl. Microbiol. 97:818-826. https://doi.org/10.1111/j.1365-2672.2004.02367.x
  18. Filya, I. and E. Sucu. 2005. Investigations on using organic acids in the silage fermentation. 1. The effect of formic acid-based preservative on the fermentation, microbial flora, aerobic stability and in situ rumen degradability characteristics of maize silage in laboratory conditions. J. Agric. Sci. 11:51-56 (in Turkish).
  19. Kung, Jr. L. and N. K. Ranjit. 2001. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J. Dairy Sci. 84:1149-1155. https://doi.org/10.3168/jds.S0022-0302(01)74575-4
  20. McDonald, P., A. R. Henderson and S. J. E. Heron. 1991. Microorganisms. In: The Biochemistry of Silage, 2nd ed. (Ed. P. McDonald, A. R. Henderson and S. J. E. Heron). Chalcombe Publications, Abersytwyth, United Kingdom. pp. 81-151.
  21. Moon, N. J. 1983. Inhibition of the growth of acid tolerant yeasts by acetate, lactate and propionate and their synergistic mixtures. J. Appl. Bacteriol. 55:454-460.
  22. Muck, R. E. 1996. A lactic acid bacteria strain to improve aerobic stability of silages. In: US Dairy Forage Research Center 1996 Research Summaries, Madison, Wisconsin. pp. 42-43.
  23. Ohshima, M. and P. McDonald. 1978. A review of the changes in nitrogenous compounds of herbage during ensilage. J. Sci. Food Agric. 29:497-505. https://doi.org/10.1002/jsfa.2740290602
  24. O'Kiely, P., R. E. Muck and P. L. O'Connor. 1986. Aerobic deterioration of alfalfa and maize silage. Am. Soc. Agric. Eng. Paper no. 86-1526.
  25. Oude Elferink, S. J. W. H., J. Krooneman, J. C. Gottschal, S. F. Spoelstra, F. Faber and F. Driehuis. 2001. Anaerobic conversion of lactic acid to acetic acid and 1,2 propanediol by Lactobacillus buchneri. Appl. Environ. Microb. 67:125-132. https://doi.org/10.1128/AEM.67.1.125-132.2001
  26. Pahlow, G. 1991. Role of microflora in forage conservation. In: Proceedings of a Conference on Forage Conservation Towards 2000. Institute of Grassland and Forage Research, Braunschweigh, Germany. pp. 26-36.
  27. Pahlow, G. and H. Honig. 1994. The role of microbial additives in the aerobic stability of silage. In: Workshop Proceedings of the 15th General Meeting of the European Grassland Federation, Netherlands Society for Grassland Fodder Crops, Wageningen, The Netherlands. pp. 149-151.
  28. Salawu, M. B., E. H. Warren and A. T. Adesogan. 2001. Fermentation characteristics, aerobic stability and ruminal degradation of ensiled pea/wheat bi-crop forages treated with two microbial inoculants, formic acid or quebracho tannins. J. Sci. Food Agric. 81:1263-1268. https://doi.org/10.1002/jsfa.937
  29. Sanderson, M. A. 1993. Aerobic stability and in vitro digestibility of microbially inoculated corn and sorghum silages. J. Anim. Sci. 71:505-514. https://doi.org/10.2527/1993.712505x
  30. SAS Institute Inc. 1989. SAS/STAT User's Guide: Version 6. 4th edn. SAS Institute Inc., Cary, North Carolina.
  31. Van Soest, P. H., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  32. Weinberg, Z. G., G. Ashbell, Y. Hen and A. Azrieli. 1993. The effect of applying lactic acid bacteria at ensiling on the aerobic stability of silages. J. Appl. Bacteriol. 75:512-518. https://doi.org/10.1111/j.1365-2672.1993.tb01588.x
  33. Weinberg, Z. G., G. Ashbell, K. K. Bolsen, G. Pahlow, Y. Hen and A. Azrieli. 1995a. The effect of a propionic acid bacterial inoculant applied at ensiling, with or without lactic acid bacteria, on the aerobic stability of pearl millet and maize silages. J. Appl. Bacteriol. 78:430-436. https://doi.org/10.1111/j.1365-2672.1995.tb03430.x
  34. Weinberg, Z. G., G. Ashbell, Y. Hen and A. Azrieli. 1995b. The effect of propionic acid bacterial inoculant applied at ensiling on the aerobic stability of wheat and sorghum silages. J. Ind. Microbiol. 15:493-497. https://doi.org/10.1007/BF01570020
  35. Weinberg, Z. G., G. Ashbell, Y. Hen, A. Azrieli, G. Szakacs and I. Filya. 2002. Ensiling whole-crop wheat and corn in large containers with Lactobacillus plantarum and Lactobacillus buchneri. J. Ind. Microbiol. Biotechnol. 28:7-11. https://doi.org/10.1038/sj/jim/7000207
  36. Wohlt, J. E. 1989. Use of silage inoculant to improve feeding stability and intake of a corn silage-grain diet. J. Dairy Sci. 72:545-551. https://doi.org/10.3168/jds.S0022-0302(89)79139-6
  37. Woolford, M. K. 1975. Microbiological screening of the straight chain fatty acids (C1-C12) as potential silage additives. J. Sci. Food Agric. 26:219-228. https://doi.org/10.1002/jsfa.2740260213
  38. Woolford, M. K. 1984. The Silage Fermentation. Marcel Dekker Inc., New York, New York.
  39. Woolford, M. K. 1990. The detrimental effects of air on silage. J. Appl. Bacteriol. 68:101-116. https://doi.org/10.1111/j.1365-2672.1990.tb02554.x
  40. Zahiroddini, H., J. Baah and T. A. McAllister. 2006. Effects of microbial inoculants on the fermentation, nutrient retention and aerobic stability of barley silage. Asian-Aust. J. Anim. Sci. 19:1429-1436. https://doi.org/10.5713/ajas.2006.1429

Cited by

  1. Effect of Microbial and Chemical Combo Additives on Nutritive Value and Fermentation Characteristic of Whole Crop Barley Silage vol.28, pp.9, 2015, https://doi.org/10.5713/ajas.15.0106
  2. Bacterial and fungal core microbiomes associated with small grain silages during ensiling and aerobic spoilage vol.17, pp.1, 2017, https://doi.org/10.1186/s12866-017-0947-0
  3. Kukurūzų siloso fermentacijos rodiklių, bakterijų populiacijos ir aerobinio stabilumo svyravimai vol.105, pp.4, 2018, https://doi.org/10.13080/z-a.2018.105.048
  4. A meta-analysis on the effectiveness of homofermentative and heterofermentative lactic acid bacteria for corn silage pp.13645072, 2018, https://doi.org/10.1111/jam.14084
  5. Effect of a Chemical Preservative on Fermentation, Aerobic Stability and Nutritive Value of Whole-Crop Wheat Silage vol.32, pp.2, 2007, https://doi.org/10.1080/09712119.2007.9706863
  6. Characteristics of Solid-state Fermented Feed and its Effects on Performance and Nutrient Digestibility in Growing-finishing Pigs vol.21, pp.11, 2007, https://doi.org/10.5713/ajas.2008.80032
  7. The effects of temperature on the silage microbiology and aerobic stability of corn and vetch-grain silages vol.59, pp.4, 2007, https://doi.org/10.1080/09064700903490596
  8. Effect of inoculated corn silage enriched with sunflower oil on rumen fermentation and lipid metabolism in an artificial rumen (RUSITEC) vol.90, pp.1, 2007, https://doi.org/10.1002/jsfa.3783
  9. Nutritional status of corn silage after probiotic conservation vol.43, pp.2, 2007, https://doi.org/10.1080/09712119.2014.928629
  10. Temperature and microbial changes of corn silage during aerobic exposure vol.32, pp.7, 2007, https://doi.org/10.5713/ajas.18.0566
  11. The role of homofermentative and heterofermentative lactic acid bacteria for alfalfa silage: a meta-analysis vol.158, pp.1, 2007, https://doi.org/10.1017/s0021859620000386