DOI QR코드

DOI QR Code

Growth of InAs Quantum Dots with a Strain-Reducing Layer for 1.45 $\mu$m Emission by Migration-Enhanced Epitaxy

  • Nah, Jong-Bum (Department of Physics, Hanyang University) ;
  • Kim, Eun-Kyu (Department of Physics, Hanyang University)
  • Published : 20071000

Abstract

InAs self-assembled quantum-dot (QD) structures with In$_{0.3}$Ga$_{0.7}$As strain-reducing layers were successfully grown on GaAs substrates by migration-enhanced epitaxy. At room temperature, the photoluminescence (PL) peak wavelength of QDs appeared at $\sim$1.3 ${\mu}$m, which is applicable for fiber-optic communications. After introducing two additional periods of InAs/InGaAs supperlattice layers on the dots, the PL peak showed a further redshift, as well as a sharper full-width at half maximum (FWHM). Emission at a peak wavelength of 1.45 $\mu$m with a FWHM of 30 meV was achieved for InAs QDs on GaAs.

Keywords

References

  1. S. I. Jung, H. Y. Yeo, I. Yun, I. K. Han, S. M. Cho and J. I. Lee, J. Korean Phys. Soc. 50, 763 (2007) https://doi.org/10.3938/jkps.50.763
  2. Z. Bakonyi, H. Su, G. Onishchukov, L. F. Lester, A. L. Gray, T. C. Newell and A. Tnnermann, IEEE J. Quantum Electron. 39, 1409 (2003) https://doi.org/10.1109/JQE.2003.818306
  3. E. T. Kim, Z. Chen and A. Madhukar, J. Korean Phys. Soc. 49, 837 (2006)
  4. J. He, B. Xu, Z. C. Wang, S. C. Qu, F. Q. Liu, T. W. Zhu, X. L. Ye, F. A. Zhao and X. Q. Meng, J. Crystal Growth 240, 395 (2002)
  5. N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S. Mikhrin, A. P. Vasil'ev, E. S. Semenova, M. V. Maximov, Yu. M. Shernyakov, N. V. Kryzhanovskaya, V. M. Ustinov and D. Bimberg, Electron. Lett. 39, 1126 (2003) https://doi.org/10.1049/el:20030753
  6. K. Akahane, N. Yamamoto and N. Ohtani, Physica E 21, 295 (2004) https://doi.org/10.1016/j.physe.2003.11.016
  7. C. M. Tey, H. Y. Liu, A. G. Cullis, I. M. Ross and M. Hopkins, J. Crystal Growth 285, 17 (2005) https://doi.org/10.1016/j.jcrysgro.2005.06.059
  8. T. Kita, Y. Masuda, T. Mori and O. Wada, Appl. Phys. Lett. 83, 4152 (2003) https://doi.org/10.1063/1.1627943
  9. X. Q. Zhang, S. Ganapathy, I. Suemune, H. Kumano, K. Uesugi, Y. Nabetani and T. Matsumoto, Appl. Phys. Lett. 83, 4524 (2003) https://doi.org/10.1063/1.1629803
  10. H. Y. Liu, D. T. Childs, T. J. Badcock, K. M. Groom, I. R. Sellers, M. Hopkinson, R. A. Hogg, D.J. Robbins, D. J. Mowbray and M. S. Skolnick, IEEE Photon. Technol. Lett. 17, 1139 (2005) https://doi.org/10.1109/LPT.2005.846948
  11. Z. Gong, Z. D. Fang, Z. H. Miao, Z. C. Niu and S. L. Feng, J. Crystal Growth 274, 78 (2005) https://doi.org/10.1016/j.jcrysgro.2004.10.005
  12. A. Hospodkova, E. Hulicius, J. Oswald, J. Pangrac, T. Mates, K. Kuldova, K. Melichar and T. Simecek, J. Crystal Growth 298, 582 (2007) https://doi.org/10.1016/j.jcrysgro.2006.10.157
  13. A. Bosacchi, P. Frigeri, S. Franchi, P. Allegri and V. Avanzini, J. Crystal Growth 175/176, 771 (1997)
  14. A. Bosacchi, F. Colonna, S. Franchi, P. Pascarella, P. Allegri and V. Avanzini, J. Crystal Growth 150, 185 (1995)
  15. X. W. Lin, J. Washburn, Z. Liliental-Weber, E. R. Weber, A. Sasaki, A. Wakahara and Y. Nabetani, Appl. Phys. Lett. 65, 1677 (1994)
  16. J. Bloch, J. Shah, W. S. Hobson, J. Lopata and S. N. G. Chu, Appl. Phys. Lett. 75, 2199 (1999)
  17. K. Mukai and M. Sugawara, Appl. Phys. Lett. 74, 3963 (1999)