Gene Transcription in the Leaves of Rice Undergoing Salt-induced Morphological Changes (Oryza sativa L.)

  • Kim, Dea-Wook (Graduate School of Life and Environmental Science, University of Tsukuba) ;
  • Shibato, Junko (Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Agrawal, Ganesh Kumar (Research Laboratory for Agricultural Biotechnology and Biochemistry (RLABB)) ;
  • Fujihara, Shinsuke (Plant Nutrition Diagnosis Laboratory, National Agriculture Research Center) ;
  • Iwahashi, Hitoshi (Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST)) ;
  • Kim, Du Hyun (Department of Environmental Horticulture, University of Seoul) ;
  • Shim, Ie-Sung (Department of Environmental Horticulture, University of Seoul) ;
  • Rakwal, Randeep (Human Stress Signal Research Center (HSS), National Institute of Advanced Industrial Science and Technology (AIST))
  • Received : 2006.12.21
  • Accepted : 2007.05.04
  • Published : 2007.08.31

Abstract

We describe the gene expression profile of third leaves of rice (cv. Nipponbare) seedlings subjected to salt stress (130 mM NaCl). Transcripts of Mn-SOD, Cu/Zn-SOD, cytosolic and stromal APX, GR and CatB were up-regulated, whereas expression of thylakoid-bound APX and CatA were down-regulated. The levels of the compatible solute proline and of transcripts of its biosynthetic gene, ${\Delta}^1$-pyrroline-5-carboxylate synthetase (P5CS), were strongly increased by salt stress. Interestingly, a potential compatible solute, ${\gamma}$-aminobutyric acid (GABA), was also found to be strongly induced by salt stress along with marked up-regulation of transcripts of GABA-transaminase. A dye-swap rice DNA microarray analysis identified a large number of genes whose expression in third leaves was altered by salt stress. Among 149 genes whose expression was altered at all the times assayed (3, 4 and 6 days) during salt stress, there were 47 annotated novel genes and 76 unknown genes. These results provide new insight into the effect of salt stress on the expression of genes related to antioxidant enzymes, proline and GABA as well as of genes in several functional categories.

Keywords

Acknowledgement

Supported by : AIST

References

  1. Ali, R. M. and Abbas, H. M. (2003) Response of salt stressed barley seedlings to phenylurea. Plant Soil. Environ. 49, 158-162
  2. Altman, N. (2005) Replication, variation and normalisation in microarray experiments. Appl. Bioinformatics 4, 33-44 https://doi.org/10.2165/00822942-200504010-00004
  3. Alscher, R. G., Donahue, J. L., and Cramer, C. L. (1997) Reactive oxygen species and antioxidants: Relationships in green cell. Physiol. Plant. 100, 224-233 https://doi.org/10.1111/j.1399-3054.1997.tb04778.x
  4. Asada, K. (1999) The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 601-639 https://doi.org/10.1146/annurev.arplant.50.1.601
  5. Ashraf, M. and Harris, P. J. C. (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 166, 3-16 https://doi.org/10.1016/j.plantsci.2003.10.024
  6. Bouche, N., Fait, A., Bouchez, D., Moller, S. G., and Fromm, H. (2003) Mitochondrial succinic-semialdehyde dehydrogenase of the ${\gammer}$-aminobutyrate shunt is required to restrict levels of reactive oxygen intermediates in plants. Proc. Natl. Acad. Sci. USA 100, 6843-6848
  7. Bouchereau, A., Aziz, A., Larher, F., and Martin-Tanguy, J. (1999) Polyamines and environmental challenges: recent development. Plant Sci. 140, 103-125 https://doi.org/10.1016/S0168-9452(98)00218-0
  8. Bowler, C., Montagu, M. V., and Inze, D. (1992) Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43, 83-116 https://doi.org/10.1146/annurev.pp.43.060192.000503
  9. Breitkreuz, K. E., Shelp, B. J., Fischer, W. N., Schwacke, R., and Rentsch, D. (1999) Identification and characterization of GABA, proline and quaternary ammonium compound transporters from Arabidopsis thaliana. FEBS. Lett. 450, 280-284 https://doi.org/10.1016/S0014-5793(99)00516-5
  10. Breusegem, F. V., Vranova, E., Dat, J. F., and Inze, D. (2001) The role of active oxygen species in plant signal transduction. Plant Sci. 161, 405-414 https://doi.org/10.1016/S0168-9452(01)00452-6
  11. Chao, D. Y., Luo, Y. H., Shi, M., Luo, D., and Lin, H. X. (2005) Salt-responsive genes in rice revealed by cDNA microarray analysis. Cell Res. 15, 796-810 https://doi.org/10.1038/sj.cr.7290349
  12. Chen, Z., Iyer, S., Caplan, A., Klessig, D. F., and Fan, B. (1997) Differential accumulation of salicylic acid and salicylic acidsensitive catalase in different rice tissues. Plant Physiol. 114, 193-201 https://doi.org/10.1104/pp.114.1.193
  13. Delong, J. M. and Steffen, K. L. (1998) Lipid peroxidation and $\alpha$-tocopherol content in $\alpha$-tocopherol-supplemented thylakoid membranes during UV-B exposure. Environ. Exp. Bot. 39, 177-185 https://doi.org/10.1016/S0098-8472(97)00046-4
  14. Demiral, T. and Turkan, I. (2004) Does exogenous glycinebetaine affect antioxidative system of rice seedlings under NaCl treatment? J. Plant Physiol. 161, 1089-1100 https://doi.org/10.1016/j.jplph.2004.03.009
  15. Desmaison, A. M., Marcher, M. H., and Tixier, M. (1984) Changes in the free and total amino acid composition of ripening chestnut seeds. Phytochemistry 23, 2453-2456 https://doi.org/10.1016/S0031-9422(00)84074-1
  16. Dionisio-Sese, M. L. and Tobita, S. (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci. 135, 1-9 https://doi.org/10.1016/S0168-9452(98)00025-9
  17. Dionisio-Sese, M. L. and Tobita, S. (2000) Effects of salinity on sodium content and photosynthetic responses of rice seedlings differing in salt tolerance. J. Plant Physiol. 157, 54-58 https://doi.org/10.1016/S0176-1617(00)80135-2
  18. Flowers, T. J. and Yeo, A. R. (1981) Variability in the resistance of sodium chloride salinity within rice (Oryza sativa L.) varieties. New Phytol. 88, 363-373 https://doi.org/10.1111/j.1469-8137.1981.tb01731.x
  19. Foyer, C. H., Lopez-Delgado, H., Dat, J. F., and Scott, I. M. (1997) Hydrogen peroxide- and glutathione-associated mechanisms of acclamatory stress tolerance and signaling. Physiol. Plant. 100, 241-254 https://doi.org/10.1111/j.1399-3054.1997.tb04780.x
  20. Garcia, A. B., de Almeida Engler, J., Iyer, S., Gerats, T., Van Montagu, M., et al. (1997) Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol. 115, 159-169 https://doi.org/10.1104/pp.115.1.159
  21. Gomez, J. M., Jimenez, A., Olmos, E., and Sevilla, F. (2004) Location and effects of long-term NaCl stress on superoxide dismutase and ascorbate peroxidase isozymes of pea (Pisum sativum cv. Puget) chloroplasts. J. Exp. B. 55, 119-130
  22. Hamilton, E.W. 3rd, and Heckathorn, S. A. (2001) Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol. 126, 1266-1274 https://doi.org/10.1104/pp.126.3.1266
  23. Hare, P. D., Cress, W. A., and Van Staden, J. (1998) Dissecting the role of osmolyte accumulation during stress. Plant Cell Environ. 21, 535-553 https://doi.org/10.1046/j.1365-3040.1998.00309.x
  24. Heldt, H. W. (1997) Plant Biochemistry and Molecular Biology, pp. 96-99, Oxford Univ Press, New York
  25. Hien, D. T., Jacobs, M., Angenon, G., Hermans, C., Thu, T. T., et al. (2003) Proline accumulation and P5CS gene properties in three rice cultivars differing in salinity and drought tolerance. Plant Sci. 165, 1059-1068 https://doi.org/10.1016/S0168-9452(03)00301-7
  26. Hur, J. H., Jung, K. H., Lee, C. H., and An, G. H. (2004) Stressinducible OsP5CS2 gene is essential for salt and cold tolerance in rice. Plant Sci. 167, 417-426 https://doi.org/10.1016/j.plantsci.2004.04.009
  27. Igarashi, Y., Yoshiba, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada, K., et al. (1997) Characterization of the gene for ${\delta}^1$-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol. Biol. 33, 857-65 https://doi.org/10.1023/A:1005702408601
  28. International rice genome sequencing project. (2005) The mapbased sequence of the rice genome. Nature 436, 793-800 https://doi.org/10.1038/nature03895
  29. Iwamoto, M., Higo, H., and Higo, K. (2000) Differential diunal expression of rice catalase genes: the 5′-flanking region of CatA is not sufficient for circadian control. Plant Sci. 151, 39-46 https://doi.org/10.1016/S0168-9452(99)00194-6
  30. Kaminaka, H., Morita, S., Nakajima, M., Masumura, T., and Tanaka, K. (1998) Gene cloning and expression of cytosolic glutathione reductase in rice (Oryza sativa L.). Plant Cell Physiol. 39, 1269-1280 https://doi.org/10.1093/oxfordjournals.pcp.a029330
  31. Kaminaka, H., Morita, S., Tokumoto, M., Masumura, T., and Tanaka, K. (1999) Differential gene expressions of rice superoxide dismutase isoforms to oxidative and environmental stresses. Free Rad. Res. 31, S219-225 https://doi.org/10.1080/10715769900301541
  32. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., et al. (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant J. 13, 889-905
  33. Kendziorski, C., Irizarry, R. A., Chen, K. S., Haag, J. D., and Gould, M. N. (2005) On the utility of pooling biological samples in microarray experiments. Proc. Natl. Acad. Sci. USA 102, 4252-4257
  34. Khan, M. H. and Panda, S. K. (2002) Induction of oxidative stress in roots of Oryza sativa L. in response to salt stress. Biol. Plant. 45, 625-627 https://doi.org/10.1023/A:1015171701030
  35. Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., et al. (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301, 376-379 https://doi.org/10.1126/science.1081288
  36. Kim, D. W., Rakwal, R., Agrawal, G. K., Jung, Y. H., Shibato, J., et al. (2005) A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis 26, 4521-4539 https://doi.org/10.1002/elps.200500334
  37. Kinnersley, A. M. and Turano, F. J. (2000) Gamma aminobutyric acid (GABA) and plant responses to stress. Crit. Rev. Plant Sci. 19, 479-509 https://doi.org/10.1016/S0735-2689(01)80006-X
  38. Kishor, P. B. K. (1989) Salt stress in cultured rice cells; effect of proline and abscisic acid. Plant Cell Environ. 12, 629-633 https://doi.org/10.1111/j.1365-3040.1989.tb01231.x
  39. Krishnamurthy, R. (1991) Amelioration of salinity effect in salt tolerant rice (Oryza sativa L.) by foliar application of putrescine. Plant Cell Physiol. 32, 699-703 https://doi.org/10.1093/oxfordjournals.pcp.a078133
  40. Lee, D. H., Kim, Y. S., and Lee, C. B. (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J. Plant Physiol. 158, 737-745
  41. Lutts, S., Kinet, J. M., and Bouharmont, J. (1996) Effect of salt stress on growth, mineral nutrition and proline accumulation in relation to osmotic adjustment in rice (Oryza sativa L.) cultivars differing in salinity resistance. Plant Growth. Regul. 19, 207-218 https://doi.org/10.1007/BF00037793
  42. Lutts, S., Majerus, V., and Kinet, J. M. (1999) NaCl effects on proline metabolism in rice (Oryza sativa) seedlings. Physiol. Plant. 105, 450-458 https://doi.org/10.1034/j.1399-3054.1999.105309.x
  43. Maiale, S., Sanchez, D. H., Guirado, A., Vidal, A., and Ruiz, O. A. (2004) Spermine accumulation under salt stress. J. Plant Physiol. 161, 35-42 https://doi.org/10.1078/0176-1617-01167
  44. Martin-Magniette, M. L., Aubert, J., Cabannes, E., and Daudin, J. J. (2005) Evaluation of the gene-specific dye bias in cDNA microarray experiments. Bioinformatics 21, 1995-2000 https://doi.org/10.1093/bioinformatics/bti302
  45. Matsumura, T., Tabayashi, N., Kamagata, Y., Souma, C., and Saruyama, H. (2002) Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol. Plant. 116, 317-327 https://doi.org/10.1034/j.1399-3054.2002.1160306.x
  46. McKersie, B. D., Chen, Y., De Beus, M., Bowley, S. R., Bowley, S. R., et al. (1993) Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa. L.). Plant Physiol. 103, 1155-1163 https://doi.org/10.1104/pp.103.4.1155
  47. Membre, N., Bernier, F., Staiger, D., and Berna, A. (2000) Arabidopsis thaliana germin-like proteins: common and specific features point to a variety of functions. Planta 211, 345-354
  48. Menezes-Benavente, L., Teixeira, F. K., Kamei, C. L. A., and Margis-Pinheiro, M. (2004) Salt stress induces altered expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci. 166, 323-331 https://doi.org/10.1016/j.plantsci.2003.10.001
  49. Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410 https://doi.org/10.1016/S1360-1385(02)02312-9
  50. Morita, S., Kaminaka, H., Masumura, T., and Tanaka, K. (1999) Induction of rice cytosolic ascorbate peroxidase mRNA by oxidative stress; the involvement of hydrogen peroxide in oxidative stress signalling. Plant Cell Physiol. 40, 417-422 https://doi.org/10.1093/oxfordjournals.pcp.a029557
  51. Navarre, D. A., Wendehenne, D., Durner, J., Noad, R., and Klessig, D. F. (2000) Nitric oxide modulates the activity of Tobacco aconitase. Plant Physiol. 122, 573-582 https://doi.org/10.1104/pp.122.2.573
  52. Parida, A. K. and Das, A. B. (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Safety 60, 324-349 https://doi.org/10.1016/j.ecoenv.2004.06.010
  53. Pearce, R. S., Houlston, C. E., Atherton, K. M., Rixon, J. E., Harrison, P., et al. (1998) Localization of expression of three cold-induced genes, blt101, blt4.9, and blt14, in different tissues of the crown and developing leaves of cold-acclimated cultivated barley. Plant Phsyiol. 117, 787-795 https://doi.org/10.1104/pp.117.3.787
  54. Prakash, L. and Prathapasenan, G. (1988) Putrescine reduced NaCl-induced inhibition of germination and early seedling growth of rice (Oryza sativa L.). Aust. J. Plant Physiol. 15, 761-767 https://doi.org/10.1071/PP9880761
  55. Rabbani, M. A., Maruyama, K., Abe, H., Khan, M. A., Katsura, K., et al. (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stress and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755-1767 https://doi.org/10.1104/pp.103.025742
  56. Rizhsky, L., Liang, H., and Mittler, R. (2002) The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiol. 130, 1143-1151 https://doi.org/10.1104/pp.006858
  57. Rosenzweig, B. A., Pine, P. S., Domon, O. E., Morris, M., Chen, J. J., et al. (2004) Dye bias correction in dual-labeled cDNA microarray gene expression measurements. Environ. Health. Perspect 112, 480-487 https://doi.org/10.1289/ehp.6694
  58. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467-470 https://doi.org/10.1126/science.270.5235.467
  59. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., et al. (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31, 279-292 https://doi.org/10.1046/j.1365-313X.2002.01359.x
  60. Shelp, B. J., Bown, A. W., and Mclean, M. D. (1999) Metabolism and function of gamma-aminobutyric aicd. Trends Plant Sci. 4, 446-452 https://doi.org/10.1016/S1360-1385(99)01486-7
  61. Singh, A. K. and Dubey, R. S. (1995) Changes in chlorophyll-A and chlorophyll-B contents and activities of photosystm-1 and Phosystem-2 in rice seedlings induced by NaCl. Photosynthetica 31, 489-499
  62. Su, J. and Wu, R. (2004) Stress-inducible synthesis of proline in transgenic rice confers faster growth under stress conditions than that with constitutive synthesis. Plant Sci. 166, 941-948 https://doi.org/10.1016/j.plantsci.2003.12.004
  63. Sugiyama, N., Izawa, T., Oikawa, T., and Shimamoto, K. (2001) Light regulation of circadian clock-controlled gene expression in rice. Plant J. 26, 607-615 https://doi.org/10.1046/j.1365-313x.2001.01063.x
  64. Taguchi, G., Nakamura, M., Hayashida, N., and Okazaki, M. (2003) Exogenously added naphthols induce three glucosyltransferases, and are accumulated as glucosides in tobacco cells. Plant Sci. 164, 231-240 https://doi.org/10.1016/S0168-9452(02)00405-3
  65. Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka A., Kishitani, S., et al. (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci. 148,131-8 https://doi.org/10.1016/S0168-9452(99)00133-8
  66. Tasseva, G., de Virville, J. D., Cantrel, C., Moreau, F., and Zachowski, A. (2004) Changes in the endoplasmic recticulum lipid properties in response to low temperature in Brassica napus. Plant Physiol. Biochem. 42, 811-822 https://doi.org/10.1016/j.plaphy.2004.10.001
  67. Tsang, E. W. T., Bowler, C., Herouart, D., Camp, W. V., Villarroel, R., et al. (1991) Differential regulation of superoxide dismutase in plants exposed to environmental stress. Plant Cell 3, 783-792 https://doi.org/10.1105/tpc.3.8.783
  68. Vaidyanathan, H., Sivakumar, P., Chakrabarty, R., and Thomas, G. (2003) Scavenging of reactive oxygen species in NaClstressed rice (Oryza sativa L.)-differential response in salttolerant and sensitive varieties. Plant Sci. 165, 1411-1418 https://doi.org/10.1016/j.plantsci.2003.08.005
  69. Wang, F. Z., Wang, Q. B., Kwon, S. Y., Kwak, S. S., and Su, W. A. (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J. Plant Physiol. 162, 465-472 https://doi.org/10.1016/j.jplph.2004.09.009
  70. Wang, Y., Ying, Y., Chen, J., and Wang, X. (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci. 167, 671-677 https://doi.org/10.1016/j.plantsci.2004.03.032
  71. Willekens, H., Inze, D., Van Montagu, M., and Van Camp, W. (1995) Catalase in plants. Mol. Breeding 1, 207-228 https://doi.org/10.1007/BF02277422
  72. Wingler, A., Lea, P. J., Quick, W. P., and Leegood, R. C. (2000) Photorespiration: metabolic pathways and their role in stress protection. Phyl. Trans. R. Soc. Lond. B. 355, 1517-1529 https://doi.org/10.1098/rstb.2000.0712
  73. Wu, D. H. and Laidman, D.L. (1997) Selective binding of plant proteins to heat-shock protein 70. Phytochemistry 46, 987-990 https://doi.org/10.1016/S0031-9422(97)00404-4
  74. Wu, S. H., Ramonell, K., Gollub, J., and Somerville, S. (2001) Plant gene expression profiling with DNA microarrays. Plant Physiol. Biochem. 39, 917-926 https://doi.org/10.1016/S0981-9428(01)01322-5
  75. Yamane, K., Kawasaki, M., Taniguchi, M., and Miyake, H. (2003) Differential effect of NaCl and polyethylene glycol on the ultrastructure of chloroplasts in rice seedlings. J. Plant Physiol. 160, 573-575 https://doi.org/10.1078/0176-1617-00948
  76. Zeng, L. and Shannon, M. C. (2000) Salinity effects on seedling growth and yield components of rice. Crop Sci. 40, 996-1003 https://doi.org/10.2135/cropsci2000.404996x