Heat Transfer Resistances in Three-Phase Circulating Fluidized Beds

Kang, Suk-Hwan;Son, Sung-Mo;Kim, Uk-Yeong;Kang, Yong;Cho, Yong-Jun;Kang, Hyoung-Ku
강석환;;김욱영;강용;조용준

  • Published : 20070100

Abstract

Heat transfer characteristics were investigated in the riser of a three-phase circulating fluidized bed (0.102 m ID; 3.5 m height) by analyzing the heat transfer resistances. The heat transfer resistance was examined by employing the two-resistance-in-series model. The effects of various operating variables, such as the gas and liquid velocities and solid circulation rate, on the heat transfer resistance in the region adjacent to the heater surface and that in the bed proper were determined. Neither of the heat transfer resistances increased considerably at the higher liquid velocity range in three-phase circulating fluidized beds, comparing with that in the conventional beds. The heat transfer resistance decreased in the region adjacent to the heater surface, as well as in the bed proper, upon increasing the gas velocity or solid circulation rate; in contrast, the former decreased and the latter increased slightly upon increasing the liquid velocity. A correlation for predicting the heat transfer coefficient in the region adjacent to the heater surface of the riser is proposed in terms of the modified Colburn j-factor as a function of the modified Reynolds number.

Keywords

References

  1. L.-S. Fan, Gas Liquid-Solid Fluidization Engineering, Butterworth Publishers, Stoneham, MA, USA, p.270 (1989)
  2. S. D. Kim and Y. Kang, Dispersion Phase Characteristics in Three-Phase Fluidized Beds, Mixed Flow Hydrodynamics, Advanced Engineering Fluid Mechanics Series, N. P. Cheremisinoff Ed., Gulf Publishing Co. (1996)
  3. S. D. Kim and Y. Kang, Chem. Eng. Sci., 52, 3639 (1997)
  4. P. S. Song, W. K. Choi, C. H. Jung, W. Z. Oh, S. H. Kang, and Y. Kang, J. Ind. Eng. Chem., 12, 98 (2006)
  5. H. Lee and S. M., J. Ind. Eng. Chem., 9, 202 (2003) https://doi.org/10.1021/ie50085a002
  6. K. Kuramoto, A. Tsutsumi, and T. Chiba, Can. J. Chem. Eng., 77, 291 (1999)
  7. Y. Zheng and J. X. Zhu, Chem. Eng. J., 79, 145 (2000)
  8. Y. J. Cho, S. J. Kim, S. H. Nam, Y. Kang, and S. D. Kim, Chem. Eng. Sci., 56, 1275 (2001) https://doi.org/10.1016/S0009-2509(00)00207-4
  9. S. D. Kim and Y. Kang, Stud. Surf. Sci. Catal., 159, 103 (2006)
  10. Y. Kang, Y. J. Cho, C. G. Lee, P. S. Song, and S. D. Kim, Can. J. Chem. Eng., 81, 1130 (2003)
  11. J. X. Zhu, Y. Zheng, D. G. Karamanev, and A. S. Bassi, Can. J. Chem. Eng., 78, 82 (2000)
  12. S. H. Kim, Y. J. Cho, P. S. Song, Y. Kang, and S. D. Kim, Hwahak Konghak, 37, 916 (1999)
  13. Y. J. Cho, P. S. Song, S. H. Kim, Y. Kang, and S. D. Kim, J. Chem. Eng. Jpn., 34, 254 (2001) https://doi.org/10.1252/jcej.34.1
  14. A. Matsuura and L. S. Fan, AIChE J., 30, 894 (1984) https://doi.org/10.1002/aic.690300616
  15. K. Idogawa, K. Ikeda, T. Fukuda, and S. Monoka, Int. Chem. Eng., 26, 468 (1986)
  16. Y. Kang, L. T. Fan, and S. D. Kim, AIChE J., 37, 1101 (1991)
  17. T. M. Chiu and E. N. Ziegler, AIChE J., 29, 677 (1983)
  18. K. S. Shin, P. S. Song, C. G. Lee, S. H. Kang, and Y. Kang, AIChE J., 51, 671 (2005)
  19. K. Muroyama, M. Fukuma, and A. Yasunishi, Can. J. Chem. Eng., 64, 399 (1986) https://doi.org/10.1002/cjce.5450640616
  20. J. M. Kays, Convective Heat Transfer, McGraw-Hill, New York (1966)
  21. Y. Kang, I. S. Suh, and S. D. Kim, Chem. Eng. Commun., 34, 1 (1985)