The Role of Activated Hepatic Stellate Cells in Liver Fibrosis, Portal Hypertension and Cancer Angiogenesis

간섬유화, 문맥압항진증 및 간암 혈관생성 과정에서 활성화된 간 성상세포의 역할

Lee, June-Sung;Kim, Jong-Hoon
이준성;김종훈

  • Published : 2007.09.25

Abstract

Although hepatic stellate cells, which are liver specific pehcytes, have been recognized within thevasculature of the sinusoid for more than one hundred years, the biology and function of these cellsis unclear. Recent studies have highlighted the key role of stellate cells in a number of fundamentalprocesses that include wound healing/fibrosis, vasoregulation, and vascular remodeling/angiogenesis. Inthe liver, these processes are particularly important in the development of cirrhosis, Portal hypertensionand cancer. This article highlights the recent advances in our understanding of the biology of hepaticstellate cells and discusses some of the recently-ascribed functions that are relevant to liver fibrosis,portal hypertension and cancer angiogenesis. (Korean J Hepatol 2007;13:309 319)

Keywords

References

  1. Kupffer K. Uber Sternzellen der Leber. Briefliche Mitteilung an Professor Waldeyer. Arch Mikr Anat 1876;12:353-358 https://doi.org/10.1007/BF02933897
  2. Ito T, Nemoto M. Kupffer's cells and fat storing cells in the capillary wall of human liver. Blutkapillarenwand der menschlichen Leber. Okajimas Folia Anat Jpn 1952;24:243-258 https://doi.org/10.2535/ofaj1936.24.4_243
  3. Wake K. 'Sternzellen' in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 1971;132:429-462 https://doi.org/10.1002/aja.1001320404
  4. McGee JO, Patrick RS. The role of perisinusoidal cells in hepatic fibrogenesis. An electron microscopic study of acute carbon tetrachloride liver injury. Lab Invest 1972;26:429-440
  5. de Leeuw AM, McCarthy SP, Geerts A, Knook DL. Purified rat liver fat-storing cells in culture divide and contain collagen. Hepatology 1984;4:392-403 https://doi.org/10.1002/hep.1840040307
  6. Friedman SL, Rockey DC, McGuire RF, Maher JJ, Boyles JK, Yamasaki G. Isolated hepatic lipocytes and Kupffer cells from normal human liver: morphological and functional characteristics in primary culture. Hepatology 1992;15:234-243 https://doi.org/10.1002/hep.1840150211
  7. Friedman SL, Roll FJ. Isolation and culture of hepatic lipocytes, Kupffer cells, and sinusoidal endothelial cells by density gradient centrifugation with Stractan. Anal Biochem 1987;161:207-218 https://doi.org/10.1016/0003-2697(87)90673-7
  8. Hendriks HF, Blaner WS, Wennekers HM, Piantedosi R, Brouwer A, de Leeuw AM, et al. Distributions of retinoids, retinoid-binding proteins and related parameters in different types of liver cells isolated from young and old rats. Eur J Biochem 1988;171:237-244 https://doi.org/10.1111/j.1432-1033.1988.tb13782.x
  9. Geerts A, Vrijsen R, Rauterberg J, Burt A, Schellinck P, Wisse E. In vitro differentiation of fat-storing cells parallels marked increase of collagen synthesis and secretion. J Hepatol 1989;9:59-68 https://doi.org/10.1016/0168-8278(89)90076-7
  10. Maher JJ, Bissell DM, Friedman SL, Roll FJ. Collagen measured in primary cultures of normal rat hepatocytes derives from lipocytes within the monolayer. J Clin Invest 1988;82:450-459 https://doi.org/10.1172/JCI113618
  11. Yokoi Y, Namihisa T, Kuroda H, Komatsu I, Miyajaki A, Watanabe S, Usui K. Immunocytochemical detection of desmin in fat-storing cells (Ito cells). Hepatology 1984;4:709-714 https://doi.org/10.1002/hep.1840040425
  12. Gard AL, White FP, Dutton GR. Extra-neural glial fibrillary acidic protein (GFAP) immunoreactivity in perisinusoidal stellate cells of rat liver. J Neuroimmunol 1985;8:359-375 https://doi.org/10.1016/S0165-5728(85)80073-4
  13. Pinzani M, Gesualdo L, Sabbah GM, Abboud HE. Effects of platelet-derived growth factor and other polypeptide mitogens on DNA synthesis and growth of cultured rat liver fat storing cells. J Clin Invest 1989;84:1786-1793 https://doi.org/10.1172/JCI114363
  14. Davis BH. Transforming growth factor beta responsiveness is modulated by the extracellular collagen matrix during hepatic ito cell culture. J Cell Physiol 1988;136:547-553 https://doi.org/10.1002/jcp.1041360323
  15. Parola M, Pinzani M, Casini A, Albano E, Poli G, Gentilini P, et al. Stimulation of lipid peroxidation or 4-hydroxynonenal treatment increases procollagen alpha 1 (I) gene expression in human liver fat storing cells. Biochem Biophys Res Commun 1993;194:1044-1050 https://doi.org/10.1006/bbrc.1993.1927
  16. Arthur MJ, Friedman SL, Roll FJ, Bissell DM. Lipocytes from normal rat liver release a neutral metalloproteinase that degrades basement membrane (type IV) collagen. J Clin Invest 1989;84:1076-1085 https://doi.org/10.1172/JCI114270
  17. Tran-Thi TA, Kawada N, Decker K. Regulation of endothelin-1 action on the perfused rat liver. FEBS Lett 1993;318:353-357 https://doi.org/10.1016/0014-5793(93)80544-5
  18. Rockey DC, Housset CN, Friedman SL. Activation dependent contractility of rat hepatic lipocytes in culture and in vivo. J Clin Invest 1993;92:1795-1804 https://doi.org/10.1172/JCI116769
  19. Issa R, Williams E, Trim N, Kendall T, Arthur MJ, Reichen J, et al. Apoptosis of hepatic stellate cells: involvement in resolution of biliary fibrosis and regulation by soluble growth factors. Gut 2001;48:548-557 https://doi.org/10.1136/gut.48.4.548
  20. Trim N, Morgan S, Evans M, Issa R, Fine D, Afford S, et al. Hepatic stellate cells express the low affinity nerve growth factor receptor p75 and undergo apoptosis in response to nerve growth factor stimulation. Am J Pathol 2000;156:1235-1243 https://doi.org/10.1016/S0002-9440(10)64994-2
  21. Olaso E, Salado C, Egilegor E, Gutierrez V, Santisteban A, Sancho-Bru P, et al. Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology 2003;37:674-685 https://doi.org/10.1053/jhep.2003.50068
  22. Olaso E, Santisteban A, Bidaurrazaga J, Gressner AM, Rosenbaum J, Vidal-Vanaclocha F. Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology 1997;26:634-642 https://doi.org/10.1002/hep.510260315
  23. Blouin A, Bolender RP, Weibel ER. Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol 1977;72:441-455 https://doi.org/10.1083/jcb.72.2.441
  24. Wisse E, Knook D. The investigation of sinusoidal cells: a new approach to the study of liver function. In: Popper H, Schaffner F, eds. Progress in Liver Disease. New York: Grune & Stratton, 1979:153-171
  25. Leo MA, Lieber CS. Hepatic fibrosis after long-term administration of ethanol and moderate vitamin A supplementation in the rat. Hepatology 1983;3:1-11 https://doi.org/10.1002/hep.1840030101
  26. Pinzani M, Gentilini P. Biology of hepatic stellate cells and their possible relevance in the pathogenesis of portal hypertension in cirrhosis. Semin Liver Dis 1999;19:397-410 https://doi.org/10.1055/s-2007-1007128
  27. Ueno T, Inuzuka S, Torimura T, Sakata R, Sakamoto M, Gondo K, et al. Distribution of substance P and vasoactive intestinal peptide in the human liver: light and electron immunoperoxidase methods of observation. Am J Gastroenterol 1991;86:1633-1637
  28. Knittel T, Aurisch S, Neubauer K, Eichhorst S, Ramadori G. Cell-type-specific expression of neural cell adhesion molecule (N-CAM) in Ito cells of rat liver: up-regulation during in vitro activation and in hepatic tissue repair. Am J Pathol 1996;149:449-462
  29. Niki T, Pekny M, Hellemans K, Bleser PD, Berg KV, Vaeyens F, et al. Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology 1999;29:520-527 https://doi.org/10.1002/hep.510290232
  30. Cassiman D, van Pelt J, De Vos R, Van Lommel F, Desmet V, Yap SH, Roskams T. Synaptophysin: a novel marker for human and rat hepatic stellate cells. Am J Pathol 1999;155:1831-1839 https://doi.org/10.1016/S0002-9440(10)65501-0
  31. Cassiman D, Denef C, Desmet VJ, Roskams T. Human and rat hepatic stellate cells express neurotrophins and neurotrophin receptors. Hepatology 2001;33:148-158 https://doi.org/10.1053/jhep.2001.20793
  32. Kordes C, Sawitza I, Muller-Marbach A, Ale-Agha N, Keitel V, Klonowski-Stumpe H, Haussinger D. CD133+ hepatic stellate cells are progenitor cells. Biochem Biophys Res Commun 2007;352:410-417 https://doi.org/10.1016/j.bbrc.2006.11.029
  33. Blaner WS, Hendriks HF, Brouwer A, de Leeuw AM, Knook DL, Goodman DS. Retinoids, retinoid-binding proteins, and retinyl palmitate hydrolase distributions in different types of rat liver cells. J Lipid Res 1985;26:1241-1251
  34. Blomhoff R, Wake K. Perisinusoidal stellate cells of the liver: important roles in retinol metabolism and fibrosis. FASEB J 1991;5:271-277 https://doi.org/10.1096/fasebj.5.3.2001786
  35. Nagy NE, Holven KB, Roos N, Senoo H, Kojima N, Norum KR, Blomhoff R. Storage of vitamin A in extrahepatic stellate cells in normal rats. J Lipid Res 1997;38:645-658
  36. Apte MV, Haber PS, Applegate TL, Norton ID, McCaughan GW, Korsten MA, et al. Periacinar stellate shaped cells in rat pancreas: identification, isolation, and culture. Gut 1998;43:128-133 https://doi.org/10.1136/gut.43.1.128
  37. Maher JJ, McGuire RF. Extracellular matrix gene expression increases preferentially in rat lipocytes and sinusoidal endothelial cells during hepatic fibrosis in vivo. J Clin Invest 1990;86:1641-1648 https://doi.org/10.1172/JCI114886
  38. Geerts A, Greenwel P, Cunningham M, De Bleser P, Rogiers V, Wisse E, Rojkind M. Identification of connective tissue gene transcripts in freshly isolated parenchymal, endothelial, Kupffer and fat-storing cells by northern hybridization analysis. J Hepatol 1993;19:148-158 https://doi.org/10.1016/S0168-8278(05)80188-6
  39. Ramadori G, Rieder H, Knittel T, Dienes HP, Meyer zum Buschenfelde KH. Fat storing cells (FSC) of rat liver synthesize and secrete fibronectin. Comparison with hepatocytes. J Hepatol 1987;4:190-197 https://doi.org/10.1016/S0168-8278(87)80079-X
  40. Imai K, Senoo H. Morphology of sites of adhesion between hepatic stellate cells (vitamin A-storing cells) and a three dimensional extracellular matrix. Anat Rec 1998;250:430-437 https://doi.org/10.1002/(SICI)1097-0185(199804)250:4<430::AID-AR6>3.0.CO;2-0
  41. Friedman SL, Roll FJ, Boyles J, Arenson DM, Bissell DM. Maintenance of differentiated phenotype of cultured rat hepatic lipocytes by basement membrane matrix. J Biol Chem 1989;264:10756-10762
  42. Arthur MJ, Stanley A, Iredale JP, Rafferty JA, Hembry RM, Friedman SL. Secretion of 72 kDa type IV collagenase/gelatinase by cultured human lipocytes. Analysis of gene expression, protein synthesis and proteinase activity. Biochem J 1992;287:701-707 https://doi.org/10.1042/bj2870701
  43. Benyon RC, Hovell CJ, Da Gaca M, Jones EH, Iredale JP, Arthur MJ. Progelatinase A is produced and activated by rat hepatic stellate cells and promotes their proliferation. Hepatology 1999;30:977-986 https://doi.org/10.1002/hep.510300431
  44. Knittel T, Mehde M, Kobold D, Saile B, Dinter C, Ramadori G. Expression patterns of matrix metalloproteinases and their inhibitors in parenchymal and nonparenchymal cells of rat liver: regulation by TNF-alpha and TGF-betal. J Hepatol 1999;30:48-60 https://doi.org/10.1016/S0168-8278(99)80007-5
  45. Greets A. Histrory, heterogeneity, developmental biology, and functions of quiescent hepatic stellate cells. Semin Liver Dis 2001;21:311-335
  46. Jung YD, Ahmad SA, Liu W, Reinmuth N, Parikh A, Stoeltzing O, et al. The role of the microenvironment and intercellular cross-talk in tumor angiogenesis. Semin Cancer Biol 2002;12:105-112 https://doi.org/10.1006/scbi.2001.0418
  47. Pinzani M, Failli P, Ruocco C, Casini A, Milani S, Baldi E, et al. Fat-storing cells as liver-specific pericytes. Spatial dynamics of agonist-stimulated intracellular calcium transients. J Clin Invest 1992;90:642-646 https://doi.org/10.1172/JCI115905
  48. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, et al. Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998;102:538-549 https://doi.org/10.1172/JCI1018
  49. Poli G. Pathogenesis of liver fibrosis: role of oxidative stress. Mol Aspects Med 2000;21:49-98 https://doi.org/10.1016/S0098-2997(00)00004-2
  50. Reimann T, Hempel U, Krautwald S, Axmann A, Scheibe H, Seidel D, Wenzel KW. Transforming growth factorbetal induces activation of Ras, Raf-1, MEK and MAPK in rat hepatic stellate cells. FEBS Lett 1997;403:57-60 https://doi.org/10.1016/S0014-5793(97)00024-0
  51. Bioulac-Sage P, Lafon ME, Saric J, Balabaud C. Nerves and perisinusoidal cells in human liver. J Hepatol 1990;10:105-112 https://doi.org/10.1016/0168-8278(90)90080-B
  52. Dubuisson L, Desmouliere A, Decourt B, Evade L, Bedin C, Boussarie L, et al. Inhibition of rat liver fibrogenesis through noradrenergic antagonism. Hepatology 2002;35:315-331 https://doi.org/10.1053/jhep.2002.31355
  53. Pinzani M, Milani S, Herbst H, DeFranco R, Grappone C, Gentilini A, et al. Expression of platelet derived growth factor and its receptors in normal human liver and during active hepatic fibrogenesis. Am J Pathol 1996;148:785-800
  54. Marra F, Grandaliano G, Valente AJ, Abboud HE. Thrombin stimulates proliferation of liver fat-storing cells and expression of monocyte chemotactic protein-1: potential role in liver injury. Hepatology 1995;22:780-787
  55. Pinzani M, Marra F, Carloni V. Signal transduction in hepatic stellate cells. Liver 1998;18:2-13 https://doi.org/10.1111/j.1600-0676.1998.tb00120.x
  56. Lee JS, Kang Decker NK, Chatterjee S, Yao J, Friedman S, Shah V. Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericytes and fibroblasts. Am J Pathol 2005;166:1861-1870 https://doi.org/10.1016/S0002-9440(10)62495-9
  57. Sato M, Kojima N, Miura M, Imai K, Senoo H. Induction of cellular processes containing collagenase and retinoid by integrin binding to interstitial collagen in hepatic stellate cell culture. Cell Biol Int 1998;22:115-125 https://doi.org/10.1006/cbir.1998.0234
  58. Booz GW, Baker KM. Molecular signalling mechanisms controlling growth and function of cardiac fibroblasts. Cardiovasc Res 1995;30:537-543 https://doi.org/10.1016/S0008-6363(96)88507-5
  59. Bruck R, Hershkoviz R, Lider O, Aeed H, Zaidel L, Matas Z, et al. Inhibition of experimentally-induced liver cirrhosis in rats by a nonpeptidic mimetic of the extracellular matrix-associated Arg-Gly-Asp epitope. J Hepatol 1996;24:731-738 https://doi.org/10.1016/S0168-8278(96)80270-4
  60. Russo FP, Alison MR, Bigger BW, Amofah E, Florou A, Amin F, et al. The bone marrow functionally contributes to liver fibrosis. Gastroenterology 2006;130:1807-1821 https://doi.org/10.1053/j.gastro.2006.01.036
  61. Xia JL, Dai C, Michalopoulous GK, Liu Y. Hepatocyte growth factor attenuates liver fibrosis induced by bile duct ligation. Am J Pathol 2006;168:1500-1512 https://doi.org/10.2353/ajpath.2006.050747
  62. Beaussier M, Wendum D, Schiffer E, Dumont S, Rey C, Lienhart A, Housset C. Prominent contribution of portal mesenchymal cells to liver fibrosis in ischemic and obstructive cholestatic injuries. Lab Invest 2007;87:292-303 https://doi.org/10.1038/labinvest.3700513
  63. Bataller R, Gasull X, Gines P, Hellemans K, Gorbig MN, Nicolas JM, et al. In vitro and in vivo activation of rat hepatic stellate cells results in de novo expression of L-type voltage-operated calcium channels. Hepatology 2001;33:956-962 https://doi.org/10.1053/jhep.2001.23500
  64. Bataller R, Nicolas JM, Ginees P, Gorbig MN, Garcia-Ramallo E, Lario S, et al. Contraction of human hepatic stellate cells activated in culture: a role for voltage-operated calcium channels. J Hepatol 1998;29:398-408 https://doi.org/10.1016/S0168-8278(98)80057-3
  65. Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 1997;275:1308-1311 https://doi.org/10.1126/science.275.5304.1308
  66. Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997;389:990-994 https://doi.org/10.1038/40187
  67. Amano M, Fukata Y, Kaibuchi K. Regulation and functions of Rho-associated kinase. Exp Cell Res 2000;261:44-51 https://doi.org/10.1006/excr.2000.5046
  68. Yanase M, Ikeda H, Matsui A, Maekawa H, Noiri E, Tomiya T, et al. Lysophosphatidic acid enhances collagen gel contraction by hepatic stellate cells: association with rho-kinase. Biochem Biophys Res Commun 2000;277:72-78 https://doi.org/10.1006/bbrc.2000.3634
  69. Tangkijvanich P, Tam SP, Yee HF, Jr. Wound-induced migration of rat hepatic stellate cells is modulated by endothelin-1 through rho-kinase mediated alterations in the acto-myosin cytoskeleton. Hepatology 2001;33:74-80 https://doi.org/10.1053/jhep.2001.20677
  70. Thimgan MS, Yee HF Jr. Quantitation of rat hepatic stellate cell contraction: stellate cells contribution to sinusoidal resistance. Am J Physiol 1999;277:G137-G143
  71. Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993;329:2002-2012 https://doi.org/10.1056/NEJM199312303292706
  72. Casini A, Ceni E, Salzano R, Biondi P, Parola M, Galli A, et al. Neutrophil-derived superoxide anion induces lipid peroxidation and stimulates collagen synthesis in human hepatic stellate cells: role of nitric oxide. Hepatology 1997;25:361-367 https://doi.org/10.1002/hep.510250218
  73. Angelico M, Lionetti R. Long-acting nitrates in portal hypertension: to be or not to be? Dig Liver Dis 2001;33:205-211 https://doi.org/10.1016/S1590-8658(01)80707-6
  74. Fiorucci S, Antonelli E, Morelli O, Mencarelli A, Casini A, Mello T, et al. NCX-1000, a NO-releasing derivative of ursodeoxycholic acid, selectively delivers NO to the liver and protects against development of portal hypertension. Proc Natl Acad Sci USA 2001;98:8897-8902 https://doi.org/10.1073/pnas.151136298
  75. DeLeve LD, Wang X, Kanel GC, Ito Y, Bethea NW, McCuskey MK, et al. Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome. Hepatology 2003;38:900-908 https://doi.org/10.1002/hep.1840380416
  76. Van de Casteele M, Omasta A, Janssens S, Roskams T, Desmet V, Nevens F, Fevery J. In vivo gene transfer of endothelial nitric oxide synthase decreases portal pressure in anaesthetised carbon tetrachloride cirrhotic rats. Gut 2002;51:440-445 https://doi.org/10.1136/gut.51.3.440
  77. Yu Q, Shao R, Qian HS, George SE, Itockey DC. Gene transfer of the neuronal NO synthase isoform to cirrhotic rat liver ameliorates portal hypertension. J Clin Invest 2000;105:741-748 https://doi.org/10.1172/JCI7997
  78. Hendrickson H, Chatterjee S, Cao S, Morales Ruiz M, Sessa WC, Shall V. Influence of caveolin on constitutively activated recombinant eNOS: insights into eNOS dysfunction in BDL rat liver. Am J Physiol Gastrointest Liver Physiol 2003;285:G652-G660 https://doi.org/10.1152/ajpgi.00143.2003
  79. Shall V, Chen AF, Cao S, Hendrickson H, Weiler D, Smith L, et al. Gene transfer of recombinant endothelial nitric oxide synthase to liver in vivo and in vitro. Am J Physiol Gastrointest Liver Physiol 2000;279:G1023-G1030 https://doi.org/10.1152/ajpgi.2000.279.5.G1023
  80. Morales-Ruiz M, Cejudo-Martin P, Fernandez-Varo G, Tugues S, Ros J, Angeli P, et al. Transduction of the liver with activated Akt normalizes portal pressure in cirrhotic rats. Gastroenterology 2003;125:522-531 https://doi.org/10.1016/S0016-5085(03)00909-0
  81. Zafra C, Abraldes JG, Turnes J, Berzigotti A, Fernandez M, Garca-Pagan JC, et al. Simvastatin enhances hepatic nitric oxide production and decreases the hepatic vascular tone in patients with cirrhosis. Gastroenterology 2004;126:749-755 https://doi.org/10.1053/j.gastro.2003.12.007
  82. Wesseling P, Schlingemann RO, Rietveld FJ, Link M, Burger PC, Ruiter DJ. Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation ain glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol 1995;54:304-310 https://doi.org/10.1097/00005072-199505000-00003
  83. Jain RK. Molecular regulation of vessel maturation. Nat Med 2003;9:685-693 https://doi.org/10.1038/nm0603-685
  84. Yin S, Li J, Hu C, Chen X, Yao M, Yan M, et al. CD133 positive hepatocellular carcinoma cells possess high capacity for tumorigenicity. Int J Cancer 2007;120:1444-1450 https://doi.org/10.1002/ijc.22476
  85. Klieveri L, Fehres O, Griffini P, Van Noorden CJ, Frederiks WM. Promotion of colon cancer metastases in rat liver by fish oil diet is not due to reduced stroma formation. Clin Exp Metastasis 2001;18:371-377 https://doi.org/10.1023/A:1010813916024
  86. Theret N, Musso O, Turlin B, Lotrian D, Bioulac-Sage P, Campion JP, et al. Increased extracellular matrix remodeling is associated with tumor progression in human hepatocellular carcinomas. Hepatology 2001;34:82-88 https://doi.org/10.1053/jhep.2001.25758
  87. Mouvoisin A, Bisson C, Si-Tayeb K, Balabaud C, Desmouliere A, Rosenbaum J. Involvement of matrix metalloproteinase type-3 in hepatocyte growth factor-induced invasion of human hepatocellular carcinoma cells. Int J Cancer 2002;97:157-162 https://doi.org/10.1002/ijc.1595
  88. Ankoma-Sey V, Wang Y, Dai Z. Hypoxic stimulation of vascular endothelial growth factor expression in activated rat hepatic stellate cells. Hepatology 2000;31:141-148 https://doi.org/10.1002/hep.510310122
  89. Lee JS, Semela D, Iredale J, Shall VH. Sinusoidal remodeling and angiogenesis: a new function for liver-specific pericyte? Hepatology 2007;45:817-825 https://doi.org/10.1002/hep.21564
  90. Abramsson A. Lindblom P, Betsholtz C. Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 2003;112:1142-1151 https://doi.org/10.1172/JCI200318549