A Study on Physical Properties and Catalytic Combustion of Methane of Sr Hexaaluminate Prepared using 1-butanol and Ethylene Glycol

1-butanol과 ethylene glycol을 이용하여 합성한 Sr hexaaluminate의 물리적 특성 및 메탄 연소 반응에 관한 연구

  • Shon, Jung Min (Department of Mineral Resources & Energy Engineering) ;
  • Woo, Seong Ihl (Department of Chemical & Biomolecular Engineering and Center for Ultramicrochemical Process Systems, Korea Advanced Institute of Science and Technology)
  • 손정민 (전북대학교 자원.에너지공학과) ;
  • 우성일 (한국과학기술원 생명화학공학과)
  • Received : 2006.10.10
  • Accepted : 2006.12.26
  • Published : 2007.06.30

Abstract

Sr hexaaluminate($Sr_{1-x}La_xMnAl_{11}O_{19-\alpha}$) were prepared by sol-gel method of metal alkoxide with 1-butanol or ethylene glycol as a solvent. The physical properties of prepared hexaaluminates were examined by TG/DTA, XRD and $N_2$ adsorption. When ethylene glycol was used as a solvent, the decomposition reaction and dehydroxylation reaction was observed above $400^{\circ}C$ and the temperature of the formation of a crystal structure of hexaaluminate was also increased resulting in small specific surface area and low catalytic activity of methane compared to Sr-hexaaluminate with 1-butanol.

Sr hexaaluminate($Sr_{1-x}La_xMnAl_{11}O_{19-\alpha}$)와 금속 alkoxide를 전구체로, 1-butanol과 ethylene glycol을 각각 용매로 사용한 sol-gel 법으로 합성하였다. 용매 변화에 따른 Sr hexaaluminate의 물리적 특성을 TG/DTA, XRD 및 $N_2$ adsorption을 이용하여 분석하였다. 합성 후 건조한 시료에 대한 열분해 거동을 분석한 결과는 1-butanol을 용매로 사용하여 합성한 hexaaluminate와 비교할 때, ethylene glycol을 용매로 이용한 경우 용매의 분해반응과 dehydroxylation 반응이 관찰되었고, 결정생성 온도도 상승하였다. Dehydroxylation 반응과 결정생성온도의 상승은 hexaaluminate의 소결현상을 가속시켜 낮은 비표면적의 원인이 되었다. 메탄에 대한 연소 반응으로 표면적 차이가 촉매 활성에 영향을 주었음을 확인하였다.

Keywords

References

  1. Trimm, D. L., 'Catalytic Combustion,' Applied Catalysis, 7, 249-282(1983) https://doi.org/10.1016/0166-9834(83)80027-X
  2. Arai, H. and Machida, M., 'Recent Progress in High-temperature Catalytic Combustion,' Catalysis Today, 10, 81-95(1991) https://doi.org/10.1016/0920-5861(91)80076-L
  3. Woo, S. I., Kang, S. K. and Sohn, J. M., 'Effect of Water Content in the Precursor Solution on the Catalytic Property and Stability of $Sr_{0.8}La_{0.2}MnAl_{11}O_{19}$ High-temperature Combustion Catalyst,' Applied Catalysis B: Environmental, 18, 317-324(1998) https://doi.org/10.1016/S0926-3373(98)00052-6
  4. Sohn, J. M., Kang, S. K. and Woo, S. I., 'Catalytic Properties and Characterization of Pd Supported on Hexaaluminate in High Temperature Combustion,' J. Molecular Catalysis A: Chemical, 186, 135-144(2002) https://doi.org/10.1016/S1381-1169(02)00067-5
  5. Groppi, G., Bellotto, M., Cristiam, C., Forzatti, P. and Villa, P. L., 'Preparation and Characterization of Hexaaluminate-based Materials for Catalytic Combustion,' Applied Catalysis A:General, 104(2), 101-108(1993) https://doi.org/10.1016/0926-860X(93)85092-4
  6. Ersson, A. G., Johansson, E. M. and Jaras, S. G., 'Techniques for Preparation of Manganese-substituted Lanthanum Hexaaluminates,' Studies in Surface Science and Catalysis, 118, 601-608(1998) https://doi.org/10.1016/S0167-2991(98)80226-7
  7. Euzen, P., Le Gal, J. H., Rebours, B. and Martin G., 'Deactivation of Palladium Catalyst in Catalytic Combustion of Methane,' Catalysis Today, 47(1-4), 19-27(1999) https://doi.org/10.1016/S0920-5861(98)00278-8
  8. Groppi, G., Bellotto, M., Cristiani, C., Forzatti, P. and Villa, P. L., 'Thermal Evolution Crystal Structure and Cation Valence of Mn in Substituted Ba-beta-$Al_2O_3$ Prepared via Coprecipitation in Aqueous Medium,' J. Materials Science, 34(11), 2609-2620(1999) https://doi.org/10.1023/A:1004604800540
  9. Lee, S. G., Lee, H., Lee, C. H., Kwon, J. Y., Park, H. C., Hong, S. S. and Park, S. S., 'Synthesis and Catalytic Properties of Barium Hexaaluminates Incorporated with Chromium and Lanthanum,' Reac. Kin. & Catal. Lett., 86(2), 299-306(2005) https://doi.org/10.1007/s11144-005-0325-z
  10. Yeh, T.-F., Lee, H. G., Chu, K. S. and Wang, C. B., 'Characterization and Catalytic Combustion of Methane over Hexaaluminates,' Mat. Sci. & Eng. A, 384(1-2), 324-330(2004) https://doi.org/10.1016/S0921-5093(04)00835-4
  11. Machida, K., Eguchi, K. and Arai, H., 'Preparation and Characterization of Large-Surface-Area $BaO.6Al_2O_3$,' Bull. Chem. Soc. Jpn., 61, 3659-3665(1988) https://doi.org/10.1246/bcsj.61.3659
  12. Machida, M., Eguchi, K. and Arai, H., 'Effect of Structural Modification on the Catalytic Properties of Mn-Substituted Hexaaluminates,' J. Catalysis, 123(2) 477-485(1990) https://doi.org/10.1016/0021-9517(90)90144-9
  13. Maeda, K., Mizukami, F., Niwa, S., Toba, M., Watanabe, M. and Masuda, K., 'Thermal Behaviour of Alumina from Aluminium Alkoxide Reacted with Complexing Agent,' J. Chem. Soc., Faraday Trans., 88(1), 97-104(1992) https://doi.org/10.1039/ft9928800097
  14. Mao, C.-F., Vannice, M. A., 'High Surface Area $\alpha$-alumina. I.: Adsorption Properties and Heats of Adsorption of Carbon Monoxide, Carbon Dioxide, and Ethylene,' App. Catal. A: General, 111(2), 151-173(1994) https://doi.org/10.1016/0926-860X(94)85049-6
  15. Johnson, M. F. L., 'Surface-area Stability of Aluminas,' J. Catalysis, 123, 245-259(1990) https://doi.org/10.1016/0021-9517(90)90173-H
  16. Wang, J., Tian, Z., Xu, J., Xu, Y., Xy, Z. and Lin, L., 'Preparation of Mn Substituted La-hexaaluminate Catalysts by Using Supercritical Drying,' Catalysis Today, 83, 213-222(2003) https://doi.org/10.1016/S0920-5861(03)00238-4
  17. Satterfield, C. N., Heterogeneous catalysts in industrial practices, 2nd ed., McGraw-Hill, New York, NY(1991)