Isolation of Circadian-associated Genes in Brassica rapa by Comparative Genomics with Arabidopsis thaliana

  • Kim, Jin A (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Yang, Tae-Jin (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Kim, Jung Sun (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Park, Jee Young (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Kwon, Soo-Jin (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Lim, Myung-Ho (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Jin, Mina (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Lee, Sang Choon (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Lee, Soo In (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Choi, Beom-Soon (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Um, Sang-Hee (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Kim, Ho-Il (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB)) ;
  • Chun, Changhoo (Department of Plant Science, College of Agriculture and Life Sciences, Seoul National University) ;
  • Park, Beom-Seok (Brassica Genomics Team, National Institute of Agricultural Biotechnology (NIAB))
  • Received : 2006.08.22
  • Accepted : 2007.02.12
  • Published : 2007.04.30

Abstract

Elucidation of the roles of circadian associated factors requires a better understanding of the molecular mechanisms of circadian rhythms, control of flowering time through photoperiodic pathways, and photosensory signal transduction. In Arabidopsis, the APRR1 quintet, APRRs 1, 3, 5, 7, and 9, are known as central oscillator genes. Other plants may share the molecular mechanism underlying the circadian rhythm. To identify and characterize these circadian response genes in Brassica crops whose genome was triplicated after divergence from Arabidopsis, we identified B. rapa BAC clones containing these genes by BLAST analysis of B. rapa BAC end sequences against the five corresponding Arabidopsis regions. Subsequent fingerprinting, Southern hybridization, and PCR allowed identification of five BAC clones, one for each of the five circadian-related genes. By draft shotgun sequencing of the BAC clones, we identified the complete gene sequences and cloned the five expressed B. rapa circadian-associated gene members, BrPRRs 1, 3, 5, 7, and 9. Phylogenetic analysis revealed that each BrPRR was orthologous to the corresponding APRR at the sequence level. Northern hybridization revealed that the five genes were transcribed at distinct points in the 24 hour period, and Southern hybridization revealed that they are present in 2, 1, 2, 2, and 1 copies, respectively in the B. rapa genome, which was triplicated and then diploidized during the last 15 million years.

Keywords

Acknowledgement

Supported by : National Institute of Agricultural Biotechnology

References

  1. Acarkan, A., Rossberg, M., Koch, M., and Schmidt, R. (2000) Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella. Plant J. 23, 55–62
  2. Alabadi, D., Oyama, T., Yanovsky, M. J., Harmon, F. G., Mas, P., et al. (2001) Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880–883
  3. Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815
  4. Bancroft, I. (2001) Duplicate and diverge: the evolution of plant genome microstructure. Trends Genet. 17, 89−93
  5. Blanc, G. and Wolfe, K. H. (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16, 1679–1691
  6. Bowers, J. E., Chapman, B. A., Rong, J., and Paterson, A. H. (2003) Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 422, 433−438 https://doi.org/10.1038/nature01506
  7. Cho, Y. G., Eun, M. Y., McCouch, S. R., and Chae, Y. A. (1994) The semidwarf gene, sd-1, of rice (Oryza sativa L.). II. Molecular mapping and marker-assisted selection. Theor. Appl. Genet. 89, 54−59
  8. Ewing, B. and Green, P. (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 8, 186–194
  9. Ewing, B., Hillier, L., Wendl, M. C., and Green, P. (1998) Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8, 175–185
  10. Feinberg, A. P. and Vogelstein, B. (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132, 6−13
  11. Gebhardt, C., Walkemeier, B., Henselewski, H., Barakat, A., Delseny, M., et al. (2003) Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. Plant J. 34, 529–541
  12. Gordon, D., Abajian, C., and Green, P. (1998) Consed: a graphical tool for sequence finishing. Genome Res. 8, 195– 202
  13. Grant, D., Cregan, P., and Shoemaker, R. C. (2000) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc. Natl. Acad. Sci. USA 97, 4168–4173
  14. Green, R. M. and Tobin, E. M. (1999) Loss of the circadian clock-associated protein 1 in Arabidopsis results in altered clock-regulated gene expression. Proc. Natl. Acad. Sci. USA 96, 4176–4179
  15. Hall, A. E., Fiebig, A., and Preuss, D. (2002) Beyond the Arabidopisis genome: opportunities for comparative genomics. Plant Physiol. 129, 1439−1447
  16. Kim, H. R., Yang, T. J., Kudna, D. A., and Wing, R. A. (2004) Construction and application of genomic DNA libraries; in Handbook of Plant Biotechnology, Christou, P. and Klee, H. (eds.), Vol. 1, pp. 71−80, Wiley, Chichester
  17. Kim, J. S., Chung, T. Y., King, G. J., Jin, M., Yang, T.-J., et al. (2006) A sequence-tagged linkage map of Brassica rapa. Genetics 174, 29−39
  18. Kowalski, S. D., Lan, T.-H., Feldmann, K. A., and Paterson A. H. (1994) Comparative mapping of Arabidopsis thaliana and Brassica oleracea chromosomes reveals islands of conserved organization. Genetics 138, 499–510
  19. Ku, H.-M., Vision, T., Liu, J., and Tanksley, S. D. (2000). Comparing sequenced segments of the tomato and Arabidopsis genomes: Large-scale duplication followed by selective gene loss creates a network of synteny. Proc. Natl. Acad. Sci. USA 97, 9121–9126
  20. Kumar, S., Tamura, K., and Nei, M. (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5, 150−163
  21. Lim, K.-B., de Jong, H., Yang, T.-J., Park, J.-Y., Kwon, S.-J., et al. (2005) Characterization of rDNAs and tandem repeats in the heterochromatin of Brassica rapa. Mol. Cells 19, 436− 444
  22. Love, C. G., Batley, J., Lim, G., Robinson, A. J., Savage, D., et al. (2004) New computational tools for Brassica genome research. Comp. Funct. Genom. 5, 276–280
  23. Lukens, L., Zou, F., Lydiate, D., Parkin, I., and Osborn, T. (2003) Comparison of a Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics 164, 359–372
  24. Lysak, M. A., Koch, M. A., Pecinka, A., and Schubert, I. (2005) Chromosome triplication found across the tribe Brassiceae. Genome Res. 15, 516−525
  25. Makino, S., Kiba, T., Imamura, A., Hanaki, N., Nakamura, A., et al. (2000) Genes encoding pseudo-response regulators: insight into His-to-Asp phosphorelay and circadian rhythm in Arabidopsis thaliana. Plant Cell Physiol. 41, 791−803
  26. Marra, M. A., Kucaba, T. A., Dietrich, N. L., Green, E. D., Brownstein, B., et al. (1997) High throughput fingerprint analysis of large-insert clones. Genome Res. 7, 1072−1084
  27. Matsushika, A., Makino, S., Kojima, M., and Mizuno, T. (2000) Circadian waves of expression of the APRR1/TOC1 family of pseudo-response regulators in Arabidopsis thaliana: insight into the plant circadian clock. Plant Cell Physiol. 41, 1002−1012
  28. Meinke, D. and Koornneef, M. (1997) Community standards for Arabidopsis genetics. Plant J. 12, 247−253
  29. Meinke, D. W., Cherry, J. M., Dean, C., Rounsley, S. D., and Koornneef, M. (1998) Arabidopsis thaliana: a model plant for genome analysis. Science 282, 662−682 https://doi.org/10.1126/science.282.5389.682
  30. Mizoguchi, T., Wheatley, K., Hanzawa, Y., Wright, L., Mizoguchi, M., et al. (2002) LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell 2, 629–641
  31. Mizuno, T. (1998) His-Asp phosphotransfer signal transduction. J. Biochem. (Tokyo) 123, 555−563
  32. Mizuno, T. and Nakamichi, N. (2005) Pseudo-response regulators (PRRs) or true oscillator components (TOCs). Plant Cell Physiol. 46, 677−685
  33. Murakami, M., Ashikari, M., Miura, K., Yamashino, T., and Mizuno, T. (2003) The evolutionarily conserved OsPRR quintet: rice pseudo-response regulators implicated in circadian rhythm. Plant Cell Physiol. 44, 1229−1236
  34. Murakami, M., Matsushika, A., Ashikari, M., Yamashino, T., and Mizuno, T. (2005) Circadian-associated rice pseudo response regulators (OsPRRs): insight into the control of flowering time. Biosci. Biotechnol. Biochem. 69, 410−414
  35. O'Neill, C. M. and Bancroft, I. (2000) Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J. 23, 233−243
  36. Paterson, A. H., Bowers, J. E., Burow, M. D., Draye, X., Elsik, C. G., et al. (2000). Comparative genomics of plant chromosomes. Plant Cell 12, 1523–1540
  37. Paterson, A. H., Lan, T.-H., Amasino, R., Osborn, T. C., and Quiros, C. (2001) Brassica genomics: a complement to, and early beneficiary of, the Arabidopsis sequence. Genome Biol. 2, REVIEWS1011
  38. Rana, D., van den Boogaart, T., O'Neill, C. M., Hynes, L., Bent, E., et al. (2004). Conservation of the microstructure of genome segments in Brassica napus and its diploid relatives. Plant J. 40, 725–733
  39. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Habor, N.Y
  40. Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., et al. (1998) The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93, 1219–1229
  41. Schmidt, R., Acarkan, A., and Boivin, K. (2001) Comparative structural genomics in the Brassicaceae family. Plant Phys. Biochem. 39, 253–262
  42. Schwartz, S., Zhang, Z., Frazer, K. A., Smit, A., Riemer, C., et al. (2000) PipMaker - a web server for aligning two genomic DNA sequences. Genome Res. 10, 577–586
  43. Somers, D. E., Webb, A. A. R., Pearson, M., and Kay, S. A. (1998) The short-period mutant, toc1-1, alters circadian clock regulation of multiple outputs throughout development in Arabidopsis thaliana. Development 125, 485–494
  44. Town, C. D., Cheung, F., Maiti, R., Crabtree, J., Haas, B. J., et al. (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell 18, 1348–1359
  45. Yang, Y.-W., Lai, K.-N., Tai, P.-Y., and Li, W.-H. (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J. Mol. Evol. 48, 597–604
  46. Yang, T.-J., Yu, Y., Frisch, D. A., Lee, S., Kim, H.-R., et al. (2004) Construction of various copy number plasmid vectors and their utility for genome sequencing. Genomics Inform. 2, 174–179
  47. Yang, T.-J., Kim, J.-S., Lim, K.-B., Kwon, S.-J., Kim, J.-A., et al. (2005) The Korea Brassica genome project: a glimpse of the Brassica genome based on comparative genome analysis with Arabidopsis. Comp. Funct. Genom. 6, 138−146
  48. Yang T.-J., Kim, J. S., Kwon, S.-J., Lim, K.-B., Choi, B.-S., et al. (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18, 1339–1347
  49. Zhu, H., Kim, D.-J., Baek, J.-M., Choi, H.-K., Ellis, L. C., et al. (2003). Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol. 131, 1018–1026