Continuous Reactions Using Ionic Liquids as Catalytic Phase

Wasserscheid, Peter

  • Published : 20070500

Abstract

There are many good reasons to study ionic liquids as catalyst phases in continuous processes. Besides the engineering advantage of their non-volatile nature, their adjustable solubility and coordination properties are of special interest as they allow a systematic optimisation of ionic liquid-organic biphasic catalysis, ionic liquid-compressed CO2 biphasic catalysis as well as supported ionic liquid phase (SILP) catalysis. But which catalytic reaction should be optimized using the ionic liquid approach? This contribution summarizes in its first, general part important pre-requisites with respect to reactants, products, catalytic active species and reaction conditions that make continuous catalytic operation using ionic liquids more or less promising. In the second part different examples from published process development studies are presented illustrating the aforementioned principles and demonstrating different options for technical realisation.

Keywords

References

  1. T. Welton, Coord. Chem. Rev., 248, 2459 (2004)
  2. S. A. Forsyth, J. M. Pringle, and D. R. MacFarlane, Aust. J. Chem., 57, 113 (2004)
  3. G. Pozzi, and I. Shepperson, Coord. Chem. Rev., 242, 115 (2003) https://doi.org/10.1016/S0010-8545(03)00024-9
  4. J. Dupont, R. F. De Souza, and P. A. Z. Suarez, Chem. Rev., 102, 3667 (2002)
  5. D. Zhao, M. Wu, Y. Kou, and E. Min, Catal. Today, 74, 157 (2002)
  6. C. C. Tzschucke, C. Markert, W. Bannwarth, S. Roller, A. Hebel, and R. Haag, Angew. Chem., Int. Ed Engl. 41, 3964 (2002)
  7. A. P. Dobbs and M. R. J. Kimberley, Fluorine Chem., 118, 3 (2002)
  8. H. Olivier-Bourbigou, and L. Magna, J. Mol. Catal. A: Chemical, 2484, 1 (2002)
  9. R. Sheldon, Chem. Commun., 2399 (2001)
  10. C. M. Gordon, Applied Catalysis A: General, 222, 101 (2001) https://doi.org/10.1016/S0926-860X(01)00824-9
  11. P. Wasserscheid and W. Keim, Angew. Chem., Int. Ed. Engl., 39, 3772 (2000)
  12. T. Welton, Chem. Rev., 99, 2071 (1999)
  13. P. J. Dyson, D. J. Ellis, and T. Welton, Platinum Metals Review, 42, 135 (1998)
  14. J. D. Holbrey and K. R. Seddon, Clean Products and Processes, 1, 223 (1999)
  15. M. J. Earle, U. Frohlich, S. Huq, S. Katdare, R. M. Lukasik, E. Bogel, N. V. Plechkova, and K. R. Seddon, WO 2006072785 (to Queen's University of Belfast) [Chem. Abstr. 2006, 145, 145001]
  16. M. J. Earle, K. R. Seddon, S. Forsyth, U. Frohlich, N. Gunaratne, and S. Katdare, WO 2006072775 (to Queen's University of Belfast) [Chem. Abstr. 2006, 145, 145000]
  17. B. DrieBen Holscher, P. Wasserscheid, and W. Keim, CATTECH, 7, 47 (1998)
  18. Y. Chauvin, S. Einloft, and H. Olivier, Ind. Engl. Chem. Res., 34, 1149 (1995)
  19. P. Wasserscheid, C. Hilgers, and W. Keim, J. Mol. Catal. A: Chemical, 214(1), 83 (2004)
  20. M. Picquet, S. Stutzmann, I. Tkatchenko, I. Tommasi, J. Zimmermann, and P. Wasserscheid, Green Chemistry, 5, 153 (2003) https://doi.org/10.1039/b300502j
  21. T. Prinz, W. Keim, and B. DrieBen-Holscher, Angew. Chem., Int. Ed., 35, 1708 (1996)
  22. C. Dobler, G. Mehltretter, and M. Beller, Angew. Chem., Int. Ed., 38, 3026 (1999)
  23. A. Arce, M. J. Earle, S. P. Katdare, H. Rodriguez, and K. R. Seddon, Chem. Com., 2548 (2006)
  24. F. Favre, A. Forestire, F. Hugues, and H. Olivier-Bourbigou, J. A. Chodorge, Oil Gaz European Magazine, 2, 83 (2005)
  25. H. Xin, Q. Win, M. Han, D. Wang, and Y. Jong, Appl. Catalysis, 292, 354 (2005)
  26. Z. Zhao, W. Qiao, Z. Li, G. Wang, and L. Cheng, J. Mol. Catal., 222, 207 (2004)
  27. X. Sun, S. Zhao, and R. Wang, Angew. Chem., Int. Ed., , 12, 658 (2004)
  28. Z. Zhao, W. Qiao, Z. Li, G. Wang, and L. Cheng, J. Mol. Catal., 222, 207 (2004)
  29. X. Ying and M. Sanjay, J. of Mol. Catal., 230, 129 (2005)
  30. Y. Xiao and S. V. Malhotra, J. Mol. Catal., 230, 129 (2005)
  31. V. Ladnak, N. Hofmann, N. Brausch, and P. Wasserscheid, Adv. Synth.s & Catal., 349, 719 (2007)
  32. WO 03/062171
  33. WO 03/062251
  34. WO 05/061416 (all to BASF AG)
  35. M. Maase, Chemie in unserer Zeit, 434 (2004)
  36. R. D. Rogers and K. R. Seddon, Nature Mater. 2, 363 (2003) https://doi.org/10.1038/nmat778
  37. K. R. Seddon, Science, 302, 792 (2003)
  38. J. Chojnowski, M. Cypryk, and W. Fortuniak, Heteroatom. Chem., 2, 63 (1991)
  39. C. P. Mehnert, Chem. Eur. J., 11, 50 (2005)
  40. P. R. Rony, Chem. Eng. Sci., 23, 1021 (1968)
  41. M. Cinouini, S. Colonna, H. Molinari, F. Montanari, and P. Tundo, J. Chem. Soc., Chem. Commun., 394 (1976)
  42. P. Tundo, G. Moraglio, and F. Trotta, Ind. Eng. Chem. Res., 28, 881 (1989)
  43. P. Tundo, Gazzetta Chim. Ital., 120, 69 (1990)
  44. J. Villadsen and H. Livbjerg, Catal. Rev., Sci. Eng., 17, 203 (1978)
  45. G. J. K. Acres, G. C. Bond, B. J. Cooper, and J. A. Dawson, J. Catal., 6, 139 (1966)
  46. K. T. Wan and M. E. Davis, Nature, 370, 449 (1994)
  47. M. J. Naughton and R. S. Drago, J. Catal., 155, 383 (1995)
  48. J. P. Arhancet, M. E. Davis, J. S. Merola, and B. E. Hanson, Nature, 339, 454 (1989)
  49. M. E. Davis, CHEMTECH 498 (1992)
  50. P. Wasserscheid in P. Wasserscheid, and T. Welton (Eds.) 'Transition metal catalysis' in Ionic Liquids in Synthesis, Wiley-VCH, (2003), pp. 213-257
  51. A. Riisager, K. M. Eriksen, P. Wasserscheid, and R. Fehrmann, Catal. Lett., 90, 149 (2003)
  52. A. Riisager, P. Wasserscheid, R. van Hal, and R. Fehrmann, J. Catal., 219, 252 (2003)
  53. A. Riisager, R. Fehrmann, P. Wasserscheid, and R. van Hal, in 'Ionic Liquids IIIB: Fundamentals, Progress, Challenges, and Opportunities - Transformations and Processes' (Eds. R. D. Rogers and K. R. Seddon), ACS Symposium Series, Vol. 902, 334 (2005)
  54. A. Riisager, R. Fehrmann, S. Flicker, R. van Hal, M. Haumann, and P. Wasserscheid, Angew. Chem. Int. Ed., 44, 185 (2005)
  55. A. Riisager, R. Fehrmann, M. Haumann, B. S. F. Gorle, and P. Wasserscheid, Ind. Eng. Chem. Res., 44, 9853 (2005)
  56. A. Riisager, R. Fehrmann, M. Haumann, and P. Wasserscheid, Eur. J. Inorg. Chem., 695 (2006)
  57. F. G. Sherif and L.-J. Shyu, WO9903163 (1999), (to Akzo Nobel Inc., USA)
  58. C. deCastro, E. Sauvage, M. H. Valkenberg, and W. F. Holderich, J. Catal., 196, 86 (2000)
  59. W. F. Holderich, H. H. Wagner, and M. H. Valkenberg, Spec. Publ. R. Soc. Chem., 266, 76 (2001)
  60. M. H. Valkenberg, C. deCastro, and W. F. Hölderich, Stud. Surf. Sci. Catal., 135, 4629 (2001) https://doi.org/10.1016/S0167-2991(01)81182-4
  61. M. H. Valkenberg, C. deCastro, and W. F. Holderich, Top. Catal., 14, 139 (2001) https://doi.org/10.1023/A:1009028029780
  62. C. P. Mehnert, R. A. Cook, N. C. Dispenziere, and M. Afeworki, J. Am. Chem. Soc., 124, 12932 (2002)
  63. C. P. Mehnert, E. J. Mozeleski, and R. A. Cook, Chem. Commun., 3010 (2002)
  64. A. Wolfson, I. F. J. Vankelecom, and P. A. Jacobs, Tetrahedron Lett., 44, 1195 (2003)
  65. H. Hagiwara, Y. Sugawara, K. Isobe, T. Hoshi, and T. Suzuki, Org. Lett., 6, 2325 (2004)
  66. S. Breitenlechner, M. Fleck, T. E. Muller, and A. Suppan, J. Mol. Catal., 214, 175 (2004)
  67. C. D. Frohning and C. W. Kohlpaintner in 'Applied Homogeneous Catalysis with Organometallic Compounds' (Eds. B. Cornils, W. A. Herrmann), VCH, Weinheim (1996)
  68. B. Cornils and E. Kuntz, J. Organomet. Chem., 502, 177 (1995)
  69. E. Wiebus and B. Cornils, Chem. -Ing.-Tech., 66, 916 (1994)
  70. I. T. Horvath and J. Rabai, Science 266, 72 (1994) https://doi.org/10.1126/science.7973682
  71. S. Bebefice-Malouet, H. Blancou, and A. Com- meyras, J. Fluorine Chem., 30, 171 (1985)
  72. F. V. Vyve and A. Renken, Catal. Today, 48, 237 (1999)
  73. B. Fell, C. Schobben, and G. Papadogianakis, J. Mol. Catal., 111, 179 (1995)
  74. M. Haumann, H. Koch, P. Hugo, and R. Schomcker, Appl. Catal. A, 225, 239 (2002)
  75. J. P. Arhancet, M. E. Davis, J. S. Merola, and B E. Hanson, Nature, 339, 454 (1989)
  76. J. Hjortkjaer, M. S. Scurrell, P. Simonsen, and H. Svendsen, J. Mol. Cat., 12, 179 (1981)
  77. J. P. Arhancet, M. E. Davis, J. S. Merola, and B. E. Hanson, J. Catal., 121, 327 (1990)
  78. M. Haumann, K. Dentler, Joni, A. Riisager, and P. Wasserscheid, Adv. Synth. & Catal., 49, 425 (2007)
  79. L. A. Blanchard, D. Hancu, E. J. Beckman, and J. F. Brennecke, Nature, 299, 28 (1999)
  80. L. A. Blanchard and J. F. Brennecke, Ind. Eng. Chem. Res., 40, 287 (2001) https://doi.org/10.1021/ie000632u
  81. J. L. Anthony, J. L. Anderson, E. J. Maginn, and J. F. Brennecke, J. Phys. Chem. B, 109, 6366 (2005)
  82. M. Solinas, A. Pfaltz, P. G. Cozzi, and W. Leitner, J. Am. Chem. Soc., 126, 16142 (2004) https://doi.org/10.1021/ja037954k
  83. A. M. Scurto and W. Leitner, Chem. Commun. 3681 (2006)
  84. M. F. Sellin, P. B. Webb, D. and J. Cole-Hamilton, Chem. Commun., 781 (2001)
  85. U. Hintermair, G. Zhao, C. C. Santini, M. J. Muldoon, and D. J. Cole-Hamilton, Chem. Commun., 1462 (2007)
  86. P. W. Jolly and G. Wilke, Applied Homogenous Catalysis with Organic Compounds 2, (Eds. B. Cornils and W. A. Herrman), Wiley-VCH, 1024, (1996)
  87. T. V. Rajan Babu, N. Nomura, J. Jin, B. Radetich, H. Park, and M. Nandi, Chem. Eur. J., 5, 1963 (1999)
  88. G. Wilke, J. Monkiewicz, and H. Kuhn, DE 3618169 (to Studiengesellschaft Kohle m.b.H., Germany), (1987) [Chem. Abstr. 1988, 109, P6735]
  89. M. Reetz, W. Wiesenhfer, G. Francio, and W. Leitner, Adv. Synth. Catal., 345, 1221 (2003) https://doi.org/10.1002/adsc.200390028
  90. M. T. Reetz, W. Wiesenhfer, G. Franci, and W. Leitner, Chem. Commun., 992 (2002)