A Simple Method for Combined Fluorescence In Situ Hybridization and Immunocytochemistry

  • Moon, Il Soo (Department of Anatomy, College of Medicine, Dongguk University) ;
  • Cho, Sun-Jung (Department of Anatomy, College of Medicine, Dongguk University) ;
  • Jin, IngNyol (Department of Microbiology, College of Natural Sciences, Kyungpook National University) ;
  • Walikonis, Randall (Department of Physiology and Neurobiology, University of Connecticut)
  • Received : 2007.01.31
  • Accepted : 2007.04.30
  • Published : 2007.08.31

Abstract

By combining in situ hybridization (ISH) and immunocytochemistry (IC), microscopic topological localization of mRNAs and proteins can be determined. Although this technique can be applied to a variety of tissues, it is particularly important for use on neuronal cells which are morphologically complex and in which specific mRNAs and proteins are located in distinct subcellular domains such as dendrites and dendritic spines. One common technical problem for combined ISH and IC is that the signal for immunocytochemical localization of proteins often becomes much weaker after conducting ISH. In this manuscript, we report a simplified but robust protocol that allows immunocytochemical localization of proteins after ISH. In this protocol, we fix cultured cortical or hippocampal neurons with 4% paraformaldehyde (PFA), rinse briefly in PBS, and then further fix the cells with $-20^{\circ}C$ methanol. Our method has several major advantages over previously described ones in that (1) it is simple, as it is just consecutive routine fixation procedures, (2) it does not require any special alteration to the fixation procedures such as changes in salt concentration, and (3) it can be used with antibodies that are compatible with either methanol (MeOH-) or PFA-fixed target proteins. To our best knowledge, we are the first to employ this fixation method for fluorescence ISH + IC.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Anderson, P. and Kedersha, N. (2006) RNA granules. J. Cell Biol. 172, 803-808 https://doi.org/10.1083/jcb.200512082
  2. Brendza, R. P., Serbus, L. R., Duffy, J. B., and Saxton, W. M. (2000) A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122 https://doi.org/10.1126/science.289.5487.2120
  3. Brewer, G. J., Torricelli, J. R., Evege, E. K., and Price, P. J. (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J. Neurosci. Res. 35, 567-576
  4. Burgin, K. E., Waxham, M. N., Rickling, S., Westgate, S. A., Mobley, W. C., et al. (1990) In situ hyridization histochemistry of Ca2+/calmodulin-dependent protein kinase in developing rat brain. J. Neurosci. 10, 1788-1798 https://doi.org/10.1523/JNEUROSCI.10-06-01788.1990
  5. Carson, J. H., Cui, H., and Barbarese, E. (2001) The balance of power in RNA trafficking. Curr. Opin. Neurobiol. 11, 558-563 https://doi.org/10.1016/S0959-4388(00)00249-X
  6. Cho, K. O., Hunt, C. A., and Kennedy, M. B. (1992) The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929-942 https://doi.org/10.1016/0896-6273(92)90245-9
  7. Costain, W. J., Rasquinha, I., Graber, T., Luebbert, C., Preston, E., et al. (2006) Cerebral ischemia induces neuronal expression of novel VL30 mouse retrotransposons bound to polyribosomes. Brain Res. 1094, 24-37 https://doi.org/10.1016/j.brainres.2006.03.120
  8. Goslin, K., Assmussen, H., and Banker, G. (1998) Rat hippocampal neurons in low density culture; in Culturing Nerve Cells, Banker, G. and Goslin, K. (eds.), 2nd ed., pp. 339-370, MIT Press, Cambridge, MA
  9. Hirokawa, N. (2006) mRNA Transport in dendrites: RNA granules, motors, and tracks. J. Neurosci. 26, 7139-7142 https://doi.org/10.1523/JNEUROSCI.1821-06.2006
  10. Kanai, Y., Dohmae, N., and Hirokawa, N. (2004) Kinesin transports RNA: isolation and characterization of an RNAtransporting granule. Neuron 43, 513-525 https://doi.org/10.1016/j.neuron.2004.07.022
  11. Kiebler, M. A., Hemraj, I., Verkade, P., Kohrmann, M., Fortes, P., et al. (1999) The mammalian staufen protein localizes to the somatodendritic domain of cultured hippocampal neurons: implications for its involvement in mRNA transport. J. Neurosci. 19, 288-297 https://doi.org/10.1523/JNEUROSCI.19-01-00288.1999
  12. Kim, H. K., Kim, Y. B., Kim, E. G., and Schuman, E. (2005) Measurement of dendritic mRNA transport using ribosomal markers. Biochem. Biophys. Res. Commun. 328, 895-900 https://doi.org/10.1016/j.bbrc.2005.01.041
  13. Kleiman, R., Banker, G., and Steward, O. (1994) Development of subcellular mRNA compartmentation in hippocampal neurons in culture. J. Neurosci. 14, 1130-1140 https://doi.org/10.1523/JNEUROSCI.14-03-01130.1994
  14. Knowles, R. B., Sabry, J. H., Martone, M. E., Deerinck, T. J., Ellisman, M. H., et al. (1996) Translocation of RNA granules in living neurons. J. Neurosci. 16, 7812-7820 https://doi.org/10.1523/JNEUROSCI.16-24-07812.1996
  15. Kohrmann, M., Luo, M., Kaether, C., DesGroseillers, L., Dotti, C. G., et al. (1999) Microtubule-dependent recruitment of Staufen-green fluorescent protein into large RNA-containing granules and subsequent dendritic transport in living hippocampal neurons. Mol. Biol. Cell 10, 2945-2953 https://doi.org/10.1091/mbc.10.9.2945
  16. Krichevsky, A. M. and Kosik, K. S. (2001) Neuronal RNA granules: a link between RNA localization and stimulation-dependent translation. Neuron 32, 683-696 https://doi.org/10.1016/S0896-6273(01)00508-6
  17. Lawrence, J. B. and Singer, R. H. (1985) Quantitative analysis of in situ hybridization methods for the detection of actin gene expression. Nucleic Acids Res. 13, 1777-1799 https://doi.org/10.1093/nar/13.5.1777
  18. Lee, S. H. (2005) Interaction of nonreceptor tyrosine-kinase Fer and p120 catenin is involved in neuronal polarization. Mol. Cells 20, 256-262
  19. Lee, J. E. and Jeon, C. J. (2005) Immunocytochemical localization of nitric oxide synthase-containing neurons in mouse and rabbit visual cortex and co-localization with calciumbinding proteins. Mol. Cells 19, 408-417
  20. Macchi, P., Kroening, S., Palacios, I. M., Baldassa, S., Grunewald, B., et al. (2003) Barentsz, a new component of the Staufen-containing ribonucleoprotein particles in mammalian cells, interacts with Staufen in an RNA-dependent manner. J. Neurosci. 23, 5778-5788 https://doi.org/10.1523/JNEUROSCI.23-13-05778.2003
  21. Mallardo, M., Deitinghoff, A., Muller, J., Goetze, B., Macchi, P., et al. (2003) Isolation and characterization of Staufencontaining ribonucleoprotein particles from rat brain. Proc. Natl. Acad. Sci. USA 100, 2100-2105
  22. Martin, K. C. and Zukin, R. S. (2006) RNA Trafficking and local protein synthesis in dendrites: an overview. J. Neurosci. 26, 7131-7134 https://doi.org/10.1523/JNEUROSCI.1801-06.2006
  23. Micklem, D. R., Adams, J., Grunert, S., and St Johnston, D. (2000) Distinct roles of two conserved Staufen domains in oskar mRNA localization and translation. EMBO J. 19, 1366-1377 https://doi.org/10.1093/emboj/19.6.1366
  24. Moore, M. J. (2005) From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514-1518 https://doi.org/10.1126/science.1111443
  25. Murphy, J. A., Jensen, O. N., and Walikonis, R. S. (2006) BRAG1, a Sec7 domain-containing protein, is a component of the postsynaptic density of excitatory synapses. Brain Res. 1120, 35-45 https://doi.org/10.1016/j.brainres.2006.08.096
  26. Paradies, M. A. and Steward, O. (1997) Multiple subcellular mRNA distribution patterns in neurons: a nonisotopic in situ hybridization analysis. J. Neurobiol. 33, 473-493 https://doi.org/10.1002/(SICI)1097-4695(199710)33:4<473::AID-NEU10>3.0.CO;2-D
  27. Pfeiffer, B. E. and Huber, K. M. (2006) Current advances in local protein synthesis and synaptic plasticity. J. Neurosci. 26, 7147-7150 https://doi.org/10.1523/JNEUROSCI.1797-06.2006
  28. Schuman, E. M., Dynes, J. L., and Steward, O. (2006) Synaptic regulation of translation of dendritic mRNAs. J. Neurosci. 26, 7143-7246 https://doi.org/10.1523/JNEUROSCI.1796-06.2006
  29. Tian, Q. B., Nakayama, K., Okano, A., and Suzuki, T. (1999) Identification of mRNAs localizing in the postsynaptic region. Brain Res. Mol. Brain Res. 72, 147-157 https://doi.org/10.1016/S0169-328X(99)00214-4
  30. Tiruchinapalli, D. M., Oleynikov, Y., Kelic, S., Shenoy, S. M., Hartley, A., et al. (2003) Activity-dependent trafficking and dynamic localization of zipcode binding protein 1 and Betaactin mRNA in dendrites and spines of hippocampal neurons. J. Neurosci. 23, 3251-3261 https://doi.org/10.1523/JNEUROSCI.23-08-03251.2003
  31. Vazquez, L. E., Chen, H. J., Sokolova, I., Knuesel, I., and Kennedy, M. B. (2004) SynGAP regulates spine formation. J. Neurosci. 24, 8862-8872 https://doi.org/10.1523/JNEUROSCI.3213-04.2004
  32. Vessey, J. P., Vaccani, A., Xie, Y., Dahm, R., Karra, D., et al. (2006) Dendritic localization of the translational repressor Pumilio 2 and its contribution to dendritic stress granules. J. Neurosci. 26, 6496-6508 https://doi.org/10.1523/JNEUROSCI.0649-06.2006
  33. Wilkinson, D. G. (1999) The theory and practice of in situ hybridization; in In Situ Hybridization, A Practical Approach, Wilkinson, D. G. (ed.), pp. 1-66, Oxford University Press, New York