Antimicrobial resistance of commensal bacteria isolated from food-producing animals II. Antimicrobial resistance of Escherichia coli and Enterococcus spp. isolated from pig fecal samples

가축 유래 지표 세균에 대한 항생제 내성 양상 조사 II. 돼지 분변에서 분리한 대장균 및 장구균의 항생제 내성 양상 조사

Lim, Suk-Kyung;Lee, Hee-Soo;Byun, Jung-Ryul;Park, Shin-Yung;Jung, Suk-Chan
임숙경;이희수;변정열;박신영;정석찬

  • Published : 20070300

Abstract

In this study, we investigated the prevalence and degree of antimicrobial resistance of EschericoU co/i,and Eneterococci spp. isolated from 377 pig faecal samples. The most frequently observed resistance inE. coli isolates was to tetracycline (92.6%), followed by resistance to ampicillin (68.3%) and streptomycin(68.0%). E. faecium and E. faecatis also showed resistance to tetracyclme (57.9%, 98.7%) anderythromycin (69.2%, 66.0%). Ofthe isolates, 93.4% and 73.9% of E. coh and Enterococcus spp. strainsshowed resistance against more than two of antimicrobial agents tested, respectively. This study exhibitshigher prevalence of antimicrobial resistance in commensal entehc bacteha in pigs, and highlights theurgent need for measures to regulate the abuse of antimicrobial agents, especially m food producinganimals in K-orea.

Keywords

References

  1. 김종만, 전남섭, 김종완, 진영화, 이희수, 권장희, 우승룡, 이해천, 박종명, 김재학, 이재진. 가축의 설사변에서 분리한 대장균과 살모넬라균의 항균물질 감수성과 마우스에서의 치료효과. 대한수의학회지, 1997, 37, 389-403
  2. 최원필, 이희석, 여상건, 이헌준, 정석찬. 양돈장에 있어서 Salmonella 감염증의 역학적인 연구: 2. Salmonella 속균의 약제내성 및 전달성 R plasmid. 대한수의학회지, 1986, 26, 229-235
  3. 함희진, 민경섭, 채찬희. 포유자돈 소장에서 분리된 대장균의 생화학 성상과 항생제 감수성 결과. 대한수의학회지, 1997,37, 773-777
  4. 식품의약품안전청. 축산용 항생제 관리시스템 구축, 2006, 19-27
  5. Aarestrup, F. M. Veterinary drug usage and antimicrobial resistance in bacteria of animal origin. Basic Clin Phannacol Toxicol, 2005, 96, 271-281 https://doi.org/10.1111/j.1742-7843.2005.pto960401.x
  6. Adaska, J. M., Silva, A. J., Berge, A. C. and Sischo, W. M. Genetic and phenotypic variability among Salmonella enterica serovar Typhimurium isolates from California dairy cattle and humans. Appl Environ Micorbiol, 2006, 72, 6632-6637 https://doi.org/10.1128/AEM.01038-06
  7. Ahart, J. C., Burton, G. C. and Blenden, D. C. The influence of antimicrobial agents on the percentage of tetracycline -resistant bacteria in faeces of human and animals. J Appl Bacteriol, 1978, 44, 183-190 https://doi.org/10.1111/j.1365-2672.1978.tb00789.x
  8. Arcangioli, M. A., Leroy-Setrin, S., Martel, J. L. and Chaslus-Dancla, E. Evolution of chloramphenicol resistance, with emergence of crossresistance to florfenicol, in bovine Salmonella Typhimurium strains implicates definitive phage type (DT) 104. J Med Microbiol, 2000, 49, 103-110 https://doi.org/10.1099/0022-1317-49-1-103
  9. Asai, T., Kojima, A., Harada, K, Ishihara, K., Takahashi, T. and Tamura, Y. Correlation between the usage volume of veterinary therapeutic antimicrobials and resistance in Escherichia coli isolated from the feces of foodproducing animals in Japan. Jpn J Infect Dis, 2005, 58, 369-372
  10. Bager, F. DANMAP : Monitoring antimicrobial resistance in Denmark. Int J Antimicrob. Agents, 2000, 14, 271-274 https://doi.org/10.1016/S0924-8579(00)00135-7
  11. Bartholomew, M. J., Vose, D. J., Tolldfson, L. R. and Travis, C. C. A linear model for managing the risk of antimicrobial resistance originating in food animals. Risk Anal, 2005, 25, 99-108 https://doi.org/10.1111/j.0272-4332.2005.00570.x
  12. Bauer, A. W., Kirby, M. M., Sherris, J. C. and Turck, M. Antibiotic susceptibility testing by standardized single disk method. Am J Clin Pathol, 1966, 45, 493-496 https://doi.org/10.1093/ajcp/45.4_ts.493
  13. van den Bogaard, A. E. and Stobberingh, E. E. Epidemiology of resistance to antibiotics. Links between animals and humans. Int J Antimicrob Agents, 2000, 14, 327-335 https://doi.org/10.1016/S0924-8579(00)00145-X
  14. van Den Bogaard, A. E., London, N. and Stobberingh, E. E. Antimicrobial resistance in pig faecal samples from the Netherlands (five abattories) and Sweden. J Antimicrob Chemother, 2000, 45, 663-671 https://doi.org/10.1093/jac/45.5.663
  15. Bywater, R., Deluyker, H., Deroover, E., De Jong, A., Marion, H., McConville, M., Rowan, T., Shryock, T., Shuster, D., Thomas, V., Valle, M. and Walters, J. A European survey of antimicrobial susceptibility among zoonotic and commensal bacteria isolated from food-producing animals. J Antimicrob Chemother, 2004, 54, 744-754 https://doi.org/10.1093/jac/dkh422
  16. Clinical and Laboratory Standards Institute. 2004. Performance standards for antimicrobial susceptibility testing: fourteenth informational supplement, M100-S14. Clinical and Laboratory Standards Institute, Wayne, Pa
  17. Dutka-Malen, S., Evers, S. and Courvalin, P. Detection of glycopeptide resistance genotype and identification to the species level of clinically relevant enterococci by PCR. J Clin Microbiol, 1995, 33, 24-27
  18. Guerra, B., Junker, E., Schroeter, A., Malomy, B., Lehmann, S. and Helmuth, R. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J Anti- microb Chemother, 2003, 52, 489-492 https://doi.org/10.1093/jac/dkg362
  19. Han, D. U., Choi, C., Kim, J., Cho, W. S., Chung, H. K., Ha, S. K., Jung, K. and Chae, C. Antimicrobial susceptibility for eastl + Escherichia coli isolated from diarrheic pigs in Korea. J Vet Med B Infect Dis Vet Public Health, 2002, 49, 346-348 https://doi.org/10.1046/j.1439-0450.2002.00577.x
  20. Hasman, H. and Aarestrup, F. M. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob Agents Chemother, 2002, 46, 1410-1416 https://doi.org/10.1128/AAC.46.5.1410-1416.2002
  21. Hasman, H. and Aarestrup, F. M. Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003. Antimicrob Agents Chemother, 2005, 49, 454-456 https://doi.org/10.1128/AAC.49.1.454-456.2005
  22. Hayes, J. R., English, L. L., Carter, P. J., Proescholdt, T., Lee, K. Y., Wagner, D. D. and White, D. G. Prevalence and antimicrobial resistance enterococcus species isolated from retail meats. Appl Environ Microbiol, 2003, 69, 7153-7160 https://doi.org/10.1128/AEM.69.12.7153-7160.2003
  23. Hummel, R., Tschape, H. and Witte, W. Spread of plasmid mediated nourseothricin resistance due to antibiotic use in animal husbandry. J Basic Microbiol, 1986, 26, 461-466 https://doi.org/10.1002/jobm.3620260806
  24. Kijima- Tanaka, M., Ishihara, K., Morioka, A., Kojima, A., Ohzono, T., Ogikubo, K., Takahashi, T. and Tamura, Y. A national surveillance of antimicrobial resistance in Escherichia coli isolated from food-producing animals in Japan. J Antimicrob Chemother, 2003, 51, 447-451 https://doi.org/10.1093/jac/dkg014
  25. Lester, S. C., del Pilar Pia, M., Wang, F., Perez Schael, I., Jiang, H. and o'Brien, T. The Carrage of Escherichia coli resistance to antimicrobial agents by healthy children in Boston, in Caracas, Venezuela and in Qin Pu, China. New Engl J Med, 1990, 323, 285-289 https://doi.org/10.1056/NEJM199008023230501
  26. Lim, S. K, Kim, T. S., Lee, H. S., Nam, H. M., Joo, Y. S. and Koh, H. B. Persistence of vanA-type Enterococcus faecium in Korean livestock after ban on avoparcin. Microb Drugs Resist, 2006, 12, 136-139
  27. Marano, N. N., Rossiter, S., Stamey, K, Joyce, K, Barrett, T. J., Tolldfson, L. K and Angulo, F. J. The National Antimicrobial Resistance Monitoring System (NARMS) for enteric bacteria, 1996-1999: surveillance for action. J Am Vet Med Associ, 2000, 217, 1829-1830
  28. Murry, B. E. Emergence of diseases caused by bacteria resistant to antimicrobial agents. In handbook Series in Zoonoses, Selection D: Antibiotics, Sulfonmides and Public Health, (Steel, J., Ed.), pp. 201-16, 1984, CRC press, Boca Raton. FL
  29. Murry, B. E. Can antibiotic resistance be controlled? New Engl J Med, 1994, 330, 1229-1230 https://doi.org/10.1056/NEJM199404283301710
  30. Pazdemik, T. L. and Corbett, M. D. Role of chloramphenicol reduction products in aplastic anemia. Pharmacology, 1980, 20, 87-94 https://doi.org/10.1159/000137348
  31. Pohl, P. and Lintermans, P. Reservoirs of resistance plasmids. J Toxicol Clin Exp, 1987, 7, 383-397
  32. Sayah, R. S., Kaneene, J. B., Johnson, Y. and Miller, R. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water. Appl Environ Microbiol, 2005, 71, 1394-1404 https://doi.org/10.1128/AEM.71.3.1394-1404.2005
  33. Sunde, M., Fossum, K., Solberg, A. and Sorum, H. Antibiotic resistance in Escherichia coli of the normal intestinal flora of swine. Microb Drug Resist, 1998, 4, 289-299 https://doi.org/10.1089/mdr.1998.4.289
  34. Teshager, T., Herrero, I. A., Porrero, M. C., Garde, J., Moreno, M. A. and Dominguez, L. Surveillance of antimicrobial resistance in Escherichia coli strains isolated from pigs at Spanish slaughterhouses at Spanish slaughterhouses. Int J Antimicrob Agents, 2000, 15, 137-142 https://doi.org/10.1016/S0924-8579(00)00153-9
  35. Winggins, B. A. Discriminant analysis of antibiotic resistance patterns in feal streptococci, a method to differentiated human and animal sources of fecal pollution in natural waters. Appl Environ Microbiol, 1996, 62, 3997-4002
  36. World Health Organization. WHO global principles for the containment of antimicrobial resistance in animals intended for food. Publication W.H.O./CDS/CSR/APH/2000.4. World Health Organization, Geneva, Switzerland
  37. World Health Organization. The medical impact of the use of antimicrobials in food animals. Report of a W.H.O. meeting. Publication W.H.O./EMC/ZOO/1997.4. World Health Organization, Geneva, Switzerland