Silver-Mediated Electrochemical Oxidation: Production of Silver (II) in Nitric Acid Medium and in situ Destruction of Phenol in Semi-batch Process

Matheswaran, Manickam;Balaji, Subramanian;Chung, Sang-Joon;Moon, Il-Shik

  • Published : 20070300

Abstract

The mediated electrochemical oxidation was studied with Ag (II) as the mediator ion in nitric acid medium. The oxidation of Ag (I) was performed in an electrochemical cell under various conditions, including varying the temperature and the concentrations of nitric acid and mediator ions in a batch-type electrochemical reactor in recirculation mode. The formation of Ag (II) increased upon increasing the concentration of nitric acid, but it decreased at higher temperatures. The percentage of conversion decreased upon increaseing the concentration of Ag (I). The destruction of phenol was performed in batch and continuous organic feeding modes. A maximum destruction efficiency of 88.8 % (based on CO2) was achieved in the batch process. The destruction efficiency during the continuous organic feeding increased upon increasing the temperature and initial concentration of Ag (I) up to 0.5 M. The destruction was also tested in the long run for 2 h; the steady state destruction efficiency was 75 %, based on CO2 production.

Keywords

References

  1. C. A. C. Sequeira, D. M. F. Santos, and P. S. D. Brito, Appl. Surf. Sci., 252, 6093 (2006)
  2. I. S. Kim, S. W. Choi, C. D. Heo, and S. C. Park, J. Korean Ind. Eng. Chem., 13, 33 (2002)
  3. C. W. Lee, J. Ind. Eng. Chem., 12, 967 (2006)
  4. S. C. Park and I. S. Kim, J. Korean Ind. Eng. Chem., 16, 206 (2002)
  5. D. F. Steele, D. Richardson, J. D. Campbell, D. R. Craig, and J. D. Quinn, Trans. IChemE., 68, 115 (1990)
  6. R. M. Spotnitz, R. P. Kreh, J. T. Lundquist, and P. J. Press, J. Appl. Electrochem., 20, 209 (1990)
  7. J. Bringmann, K. Ebert, U. Galla, and H. J. Schimider, J. Appl. Electochem., 25, 846 (1995)
  8. V. Devadoss, M. Noel, K. Jayaraman, and C. Ahmed Basha, J. Appl. Electrochem., 33, 319 (2003)
  9. J. C. Farmer, F. T. Wang, R. A. Hawley Fedder, P. R. Lewis, L. J. Summers, and L. Follies, J. Electrochem. Soc., 139, 654 (1992)
  10. J. J. Jow and T. C. Chou, J. Appl. Electrochem., 18, 298 (1988)
  11. A. T. Kuhn and T. H. Randle, J. Chem. Soc. Faraday Trans., 1, 403 (1985)
  12. T. H. Randle and A. T. Kuhn, Electrochim. Acta., 31, 739 (1986)
  13. M. P. Sah, J. Indian Chem. Soc., 72, 173 (1995)
  14. T. Vijayabarathi, D. Velayutham, and M. Noel, J. Appl. Electrochem., 31, 976 (2001)
  15. Y. Liu, X. Xia, and H. Liu, J. Power Sources, 130, 299 (2004)
  16. M. Fleischmann, D. Pletcher, and A. Rafinski, J. Appl. Electrochem., 1, 1 (1971)
  17. J. B. Kirwin, F. B. Peat, P. J. Proll, and L. H. Sutcliffe, J. Phys. Chem., 67, 1617 (1963)
  18. A. A. Noyes, D. De Vault, C. D. Coryell, and T. J. Deahl, J. Am. Chem. Soc., 59, 1326 (1937) https://doi.org/10.1021/ja01284a050
  19. Z. Chiba, B. Schumacher, P. Lewis, and L. Murguia, WM95 Symposia, Tucson, AZ, March 1 (1995)
  20. S. Balaji, S. J. Chung, T. Ramesh, and I. S. Moon, Chem. Eng. J., 126, 51 (2007)
  21. S. J. Chung, S. Balaji, M. Matheswaran, T. Ramesh, and I. S. Moon, Water Sci. Technol., 55, 261 (2007) https://doi.org/10.2166/wst.2007.381
  22. B. Balazs, Z. Chiba, P. Lewis, L. Murguia, and M. Adamson, Sixth International Confernece on Radioactive Waste Management & Environmental Remediation, Singapore, October 12-16 (1997)