Cytoprotective Effect by Antioxidant Activity of Quercetin in INS-1 Cell Line

INS-1 세포에서 항산화 효과를 통한 Quercetin의 세포 보호 효과

Kwon, Min-Jeong;Jung, Hye-Sook;Kim, Mi-Kyung;Kang, Seong-Hoon;Seo, Gwnag-Wook;Song, Jae-Kwang;Yoon, Tae-Yeon;Jeon, Min-Kyeong;Ha, Tae-Hwan;Yoon, Chang-Shin;Kim, Mi-Kyung;Lee, Woo-Je;Noh, Jeong-Hyun;Kwon, Soo-Kyung;Kim, Dong-Joon;Koh, Kyung-Soo;Rhee, Byung-Doo;Lim, Kyung-Ho;Lee, Soon-Hee;Park, Jeong-Hyun
권민정;정혜숙;김미경;강성훈;서광욱;송재광;윤태연;전민경;하태환;윤창신;김미경;이우제;노정현;권수경;김동준;고경수;이병두;임경호;이순희;박정현

  • Published : 20070900

Abstract

Background: Oxidative stress is induced under diabetic conditions and causes various forms of tissue damages in the patients with diabetes. Recently, pancreatic beta cells are regarded as a putative target of oxidative stress-induced tissue damage, and this seems to explain in part the progressive deterioration of beta cell function in type 2 diabetes. The aim of this study was to examine the potential of Quercetin (QE) to protect INS-1 cells from the H2O2-induced oxidative stress and the effects of QE on the glucose-stimulated insulin secretion in INS-1 cells.Methods: To study the cell viability, cells were incubated with H2O2 and/or QE at the various concentrations. To confirm the protective effect by QE in response to H2O2, the levels of antioxidant enzymes were assessed by RT-PCR and Western blot, and glutathione peroxidase activities were quantified by spectrophotometrical method. Glucose-stimulated insulin secretion (GSIS) was measured by ELISA.Results: Cell incubations were performed with 80 μM of H2O2 for 5 hours to induce 40 - 50% of cell death. QE gradually showed protective effect (IC50 = 50 μM) in dose-dependent manner. Superoxide dismutase (SOD) mRNA level in H2O2 + QE group was increased as compared to H2O2 group, but catalase did not changed. And the QE recruited glutathione peroxidase activity against H2O2-induced oxidative injuries in INS-1 cells. Conclusion: In conclusion, these findings suggest that QE might have protective effect on beta cells by ameliorating oxidative stress and preserving insulin secretory function. (J Kor Diabetes Assoc 31:383~390, 2007)

배경: 고혈당에 의한 산화 스트레스는 당뇨병환자에서 만성합병증을 보이는 여러 조직 손상의 원인 중의 하나로 알려져 있다. 제1형 당뇨병뿐만 아니라 인슐린저항성을 중심으로 한 제2형 당뇨병 역시 결국 베타세포 기능의 장애로 인해 발병한다. 최근 췌장베타 세포 자체에 대한 산화 스트레스가 당뇨병 발병의 원인일 것이라는 연구가 보고되고 있으며 항산화제의 당뇨병 예방에 대한 역할에 관심이 기울여지고 있다. 우리는 양파, 포도 등에 있는 강력한 항산화제의 일종인 Quercetin (QE)을 사용하여 인슐린을 분비하는 베타세포 모델(INS-1 cell)에서 보호효과를 알아보고자 하였다.방법: H2O2로 산화스트레스를 주고 QE 첨가 정도에 따른 세포 생존능을 MTT를 이용하여 측정하였다. 세포 보호에 관한 작용이 항산화 효과에 의한 것임을 확인하기 위하여 SOD와 catalase를 Western blot으로 확인하고 RT-PCR로 mRNA를 측정하였으며 Total Glutathione Quantification Kit로 glutathione peroxidase 활성을 측정하였다. 기능 보존을 알아보기 위하여 고혈당 자극에 의한 인슐린분비능을 ELISA로 측정하여 확인하였다.결과: 세포 생존능에 있어 QE은 농도에 비례하여 산화스트레스에 대한 보호 효과를 보였다. SOD는 QE 첨가군에서 증가하였지만 catalase는 변화가 없었고 산화스트레스만 받은 INS-1 cell에 비해 QE 첨가군에서 유의하게 glutathione peroxidase 활성의 개선을 보였다. 고혈당 자극에 의한 인슐린분비능 또한 QE 첨가군에서 높게 나타났다.

Keywords

References

  1. Kumar V, Fausto N. Abbas A: Robbins & Cotran Pathologic Basis of Disease: free radical induced cell injury. 7th ed. p. 16-8, Philadelphia, W B. Saunders, 2004
  2. Tiwari AK: Antioxidants: new-generation therapeutic base for treatment of polygenic disorders. Curr Sci 86:1092-1102, 2004
  3. Cui K, Luo XL, Xu KY, Ven Mtuthy MR: Role of oxidative stress in neurodegeneration: recent developments in assay methods for oxidative stress and nulraceutical antioxidants. Prog Neuropsychopharmacol Biol Psychiatry 28:771-99, 2004
  4. Ceriello A, Motz E: Is oxidative stress the pathogenic mechanism underlying insulin resistance, diabetes, and cardiovascular disease? The common soil hypothesis revisited. Arterioscler Thromb Vasc Biol 24:816-23, 2004 https://doi.org/10.1161/01.ATV.0000122852.22604.78
  5. Klaunig JE, Kamendulis LM: The role of oxidative stress in carcinogenesis. Annu Rev Pharmacol Toxicol 44:239-67, 2004 https://doi.org/10.1146/annurev.pharmtox.44.101802.121851
  6. Ballinger SW: Mitochondrial dysfunction in cardiovascular disease. Free Radic Biol Med 38:1278-95, 2005 https://doi.org/10.1016/j.freeradbiomed.2005.02.014
  7. Gihson GE, Huang HM: Oxidative stress in Alzheimer's disease. Neurobiol Aging 26:575-8, 2005
  8. Grankvisl K, Markhmd SL, Taljedal IB: CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem J 199: 393-8, 1981 https://doi.org/10.1042/bj1990393
  9. Hanasaki Y, Ogawa S, Fukui S: The correlation between active oxygen scavenging and antioxidative effects of flavonoids. Free Radic Biol Med 6:845-53, 1994
  10. Ihara Y, Toyoknni S, Uchida K, Odaka H, Tanaka T, Ikeda H, Hiai H, Seino Y, Yamada Y: Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats a model of type 2 diabetes. Diabetes 48:927-32, 1999 https://doi.org/10.2337/diabetes.48.4.927
  11. Baynes JW: Role of oxidative stress in development of complication in diabetes. Diabetes 40:405-12, 1991 https://doi.org/10.2337/diabetes.40.4.405
  12. Szkudelski T: The mechanism of alloxan and streptozolocin action in B cells of the rat pancreas. Physiol Res 50:536-46, 2001
  13. Kuhisch HM, Wang J. Bray TM, Phillips JP: Targeted overexpression of Cu/Zn superoxide dismutase protects pancreatic b-cells against oxidative stress. Diabetes 46:1563-6, 1997 https://doi.org/10.2337/diabetes.46.10.1563
  14. Plumb W. Price KR. Williamson G: Antioxidant properties of flavonol glycosides from green beans. Redox Rep 4:123-7, 1999 https://doi.org/10.1179/135100099101534800
  15. Fiorani M. Sanctis R. Menghinello P, Cucchiarini L. Cellini B, Dacha M: Quercerin prevents glutathione depletion induced by dehydroascorbic acid in rabbit red blood cells. Free Radic Res 34:639-48, 2001 https://doi.org/10.1080/10715760100300531
  16. Baynes JW, Thorpe SR: The role of oxidative stress in diabetic complications. Curr Opin Endocrinol Diabetes Obes 3:277-84, 1996 https://doi.org/10.1097/00060793-199608000-00001
  17. Ceridlo A: New insights on oxidative stress and diabetic complications may lead 10 a causal antioxidant therapy. Diabetes Care 26:1589-96, 2003 https://doi.org/10.2337/diacare.26.5.1589
  18. Lawverence MC, Bhatt HS. Watterson JM, Easom RA: Regulation of insulin gene transcription by a $Ca^{2+}$ responsive pathway involving calcineurin and nuclear factor of activated T cells. Mol Endocrinol 15:1758-67, 2001 https://doi.org/10.1210/me.15.10.1758
  19. West IC: Radicals and oxidative stress in diabetes. Diabet Mal 17: 171-80, 2000 https://doi.org/10.1046/j.1464-5491.2000.00259.x
  20. Robertson RP, Zhang HJ, Pyzdrowski KL, Walseth TF: Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentration. J Clin Invest 90:320-5, 1992 https://doi.org/10.1172/JCI115865
  21. Wolff SP, Dean RT: Glucose autoxidation and protein modification. The potential role of autoxidative glycosylation in diabetes. Biochem J 245:243-50, 1987 https://doi.org/10.1042/bj2450243
  22. Hunt JV. Dean RT. Wolff SP: Hydroxyl radical production and autoxidative glycosylation, Glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and ageing. Biochem J 256:205-12, 1988 https://doi.org/10.1042/bj2560205
  23. Suarez-Pinzon WL, Strynadka K, Rabinovirch A: Destuction of rat pancreatic islet beta-cells by cytokines involves the production of cytotoxic aldehydes. Endocrinology 137:5290-6, 1996 https://doi.org/10.1210/en.137.12.5290
  24. 김철희, 김찬희, 박형규, 서교일, 이기업: $H_{2}O_{2}$가 정상백서 췌장소도의 인슐린 분비에 미치는 영향. 당뇨병 26:265-73, 2002
  25. 은미정, 원규장, 문준성, 문선중, 이지은, 윤지성, 천경아, 조인호, 이형우: INS-1 세포, HIT-T15 세포 및 백서 퉤도 세포에서 포도당 독성의 원인으로서 산화 스트레스 당뇨병 29:393-400, 2005
  26. Robertson RP: Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351-4, 2004 https://doi.org/10.1074/jbc.R400019200
  27. Grankvist K, Marklund SL, Taljedal IB: Superoxide dismutase is a prophylactic against alloxan diabetes. Nature 294:158-60, 1981 https://doi.org/10.1038/294158a0
  28. Benhamou PY, Moriscot C, Richard MJ, Beatnx O, Bader L, Pattou F, Kerr-Conte J, Chroboczek J, Lemarchand P, Halimi S: Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets. Diabetologia 41:1093-100, 1998 https://doi.org/10.1007/s001250051035
  29. Moriscor C, Pattou F, Kerr-Conte J, Richard MJ, Lemarchand P, Benhamou PY: Contribution of adenoviral-mediated superoxide dismutase gene transfer to the reduction in nitric oxide-induced cytotoxicity on human islets and INS-1 insulin-secreting cells. Diabetologia 43:625-31, 2000 https://doi.org/10.1007/s001250051351
  30. Tanaka Y, Gleason CE, Trans PO, Harmon JS, Robertson RP: Prevention of glucose toxicity in HIT- T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci USA 96: 1 0857-62, 1999
  31. Kaneto H, Kajimolo Y, Miyagawa J, Malsuoka T, Fujitani Y, Umayahara Y, Hanafusa T, Matsuzawa Y, Yamasaki Y, Hon M: Beneficial effects of antioxidants in diabetes: possible protection of pancreatic ${\beta}$-cells against glucose toxicity. Diabetes 48:2398-406, 1999 https://doi.org/10.2337/diabetes.48.12.2398
  32. Ihara Y, Yamada Y, Toyokuni S, Miyawaki K, Ban N, Adachi T, Kmoe A, Iwaknta T, Knoola A, Hiai H. Seina Y: Antioxidant ${\alpha}$-tocopherol ameliorates glycemic control of GK rats, a model of type 2 diabetes. FEBS Lett 473:24-6, 2000 https://doi.org/10.1016/S0014-5793(00)01489-7
  33. Moskaug JO, Carlsen H, Myhrsrad M, Blomhoff R: Molecular imaging of the biological effects of quercetin and quercetin-rich food. Mech Ageing Dev 125:315-24, 2004 https://doi.org/10.1016/j.mad.2004.01.007
  34. William M. Amanda JS, Michael EJL, Peter G, Garry GD, Alan C: Effect of freezing and storage on the phenolics, ellagitannins, flavonids, and antioxidant capacity of red raspberries. J Agric Food Chem 50:5197-201, 1999 https://doi.org/10.1021/jf020141f
  35. Hakkinen SH. Karenlampi SO. Heinonen IM. Mykkanen HM, Torronen AR: Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible berries. J Agric Food Chem 47:2274-9, 1999 https://doi.org/10.1021/jf9811065
  36. Formica JN, Regelson W: Review of the biology of quercetin and related bioflavofwids. Food Chem Toxicol 33:1061-80, 1995 https://doi.org/10.1016/0278-6915(95)00077-1
  37. Gadow AV, Joubert E, Hansmann CF: Comparison of the antioxidant activity of aspalathin with that of other plant phenols of rooibos tea(Aspalathus linearis), ${\alpha}$-tocopherol, BHT, and BHA. J Agric Food Chem 45:632-8, 1997 https://doi.org/10.1021/jf960281n
  38. Pietta PG: Flavonoids as antioxidants. J Nat Prod 63: 1035-42, 2000 https://doi.org/10.1021/np9904509
  39. Ferguson LR: Role of plant polyphenols in genomic stability. Murat Res 475:89-111, 2001
  40. Nagata H, Takekoshi S, Takagi T, Honma T, Watanabe K: Alltioxidative action of flavonoids quercetin and catechin, mediated by the activation of glutathione peroxidase. Tokai J Exp Clin Med 24:1-11, 1999
  41. Chen TJ, Jeng JY, Linn CW, Wu CY, Chen YC: Quercetin inhibition of ROS-dependent and -independent apoplosis in rat glioma C6 cells. Toxicology 223:113-26, 2006 https://doi.org/10.1016/j.tox.2006.03.007
  42. Scalbert A, Williamson G: Dietary intake and bioavailability of polyphenols. J Nutr 130:20735-855, 2000
  43. Manach C. Williamson G, Morand C, Scalbert A, Remesy C: Bioavailability and bioefficacy of polyphenols in humans. Review of 97 bioavailability studies. Am J Clin Nutr 81:2305-428, 2005
  44. Vessal M, Hemmati M, Vasei M: Antidiabetic effects of quercetin in streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol 135: 357-64, 2003 https://doi.org/10.1016/S1532-0456(03)00140-6
  45. Coskun O. Kanter M, Korkmaz A, Oter S: Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and ${\beta}$-cell damage in rat pancreas. Pharmacol Res 51:117-23, 2005 https://doi.org/10.1016/j.phrs.2004.06.002