Oxidative Stress Causes Vascular Insulin Resistance in OLETF Rat Through Increased IRS-1 Degradation

OLETF 쥐에서 산화스트레스가 IRS-1 degradation을 통한 혈관성 인슐린저항성의 유발

Park, Jung-Lae;Lee, Young-Sil;Kim, Bo-Hyun;Kang, Yang-Ho;Kim, In-Ju;Kim, Yong-Ki;Son, Seok-Man;Son, Seok-Man
박정래;이영실;김보현;강양호;김인주;김용기;손석만;손석만

  • Published : 20070100

Abstract

-Backgroud: Insulin resistance and oxidative stress have been reported to play essential pathophysiological roles in diabetic cardiovascular complication. The relationship between insulin resistance and oxidative stress in vasculature remains unclear. The study was conducted to assess whether oxidative stress induce vascular insulin resistance in OLETF rat, a model of type 2 diabetesMethods: We used OLETF rats (20/30/40 weeks, n = 5/5/5), as models of type 2 DM, and LETO rats (20/30/40 weeks, n = 5/5/5) as controls. Aortas of each rats were extracted. Superoxide anion production was detected by NBT assay and lucigenin assay. 8-hydroxyguanosine (OHdG) and nitrotyrosine were detected as markers of oxidative stress in 20 and 40 weeks groups. The glucose uptake of aortas was measured by detecting 2-deoxyglucose uptake in both groups. The expression of IR, IRS-1, PI3-K and Akt/PKB were detected by immuno precipitation and immunoblotting in 20, 30 and 40 weeks groups Results: Superoxide anion production and markers of oxidative stress (8-OHdG, nitrotyrosine) were significantly increased in aortas of OLETF rats compared with controls. Aortas of OLETF rats exhibited decreased IRS-1 content and increased phosphorylation of IRS-1 at Ser307 compared with LETO rats. There were no significant differences in expressions of IR, PI3-K and Akt/PKB between two groups Conclusion: These results suggest that oxidative stress induces insulin resistance in vasculature of OLETF rat specifically through increasing serine phosphorylation of IRS-1 and its degradation by a proteasome-dependent pathway, providing an alternative mechanism that may explain the association with insulin resistance and diabetic vascular complications. (J Kor Diabetes Assoc 31:22~32, 2007)

연구배경: 당뇨병환자와 당뇨병 동물모델에서 산화스트레스가 증가하며 이러한 산화스트레스가 당뇨병에서 혈관합병증의 발생에 중요한 원인임이 밝혀지고 있고, 혈관조직의 인슐린저항성에 관여한다고 알려져 있다. 따라서, 본 연구에서는 제2형 당뇨병 모델인 OLETF 쥐에서 산화스트레스가 혈관조직에서 인슐린저항성을 유도하는 기전을 알아보고자 하였다.방법: OLETF 쥐 수컷 20주 5마리, 30주 5마리와 40주 5마리를 사용하였고, 대조군으로 LETO 쥐 수컷 20주 5마리, 30주 5마리와 40주 5마리를 사용하였고, 각 군의 대동맥을 적출하여 20주와 40주군의 superoxide 음이온, 8-OHdG, nitrotyrosine 생성량을 측정하였고, 각 군의 포도당 섭취률을 2-deoxyglucose 이용해 측정하였으며 20주, 30주, 40주군의 IR, IRS-1, PI3K, Akt/PKB의 발현 정도, Akt/PKB의 인산화와 IRS-1 Ser307의 인산화를 비교해 보았다.결과: Superoxide 음이온과 8-OHdG, nitrotyrosine같은 산화스트레스의 표지자가 대조군에 비해 OLETF 쥐의 대동맥 조직에서 현저히 증가되어 있었고, NBT 염색을 했을때 OLETF 쥐의 대동맥 중막의 염색은 LETO 쥐에 비해 감소되어 있는 결과를 보였으나, 외막에서는 LETO 쥐에 비해 현저히 염색이 증가되어 있는 결과를 보였다. 또한 2-deoxyglucose의 섭취가 OLETF 쥐의 대동맥 조직에서 현저히 감소되어 있었으며 OLETF 쥐의 대동맥 조직에서 IR, PI3-K, Akt/PKB의 발현과 인산화에는 차이가 없었으나, IRS-1의 발현이 LETO에 비해 감소되어 있었고, IRS-1의 Ser307의 인산화가 증가되어 있는 결과를 보였다.

Keywords

References

  1. Steiner C: Diabetes and atherosclerosis. Diabetes 30(Suppl. 2):S1-7, 1981 https://doi.org/10.2337/diabetes.30.1.1
  2. The Diabetes Control and Complications Trial Resaerch Group: The effect of intensive treatment of diabetes on the developmentand progression of long-term complication in insulin-dependent diabetes mellitus. N Eng J Med 329:977-86, 1993 https://doi.org/10.1056/NEJM199309303291401
  3. Nourooz-Zadeh J, Tauaddini-Surmadi J, McCarthy S, Betteridge DJ, Wolff SP: Elevated levels of authentic plasma hydroperoxides in NIDDM. Diabetes 44:1054-8, 1995 https://doi.org/10.2337/diabetes.44.9.1054
  4. Frustaci A, et al: Myocardial cell death in human diabetes. Circ Res 87:1123-32, 2000 https://doi.org/10.1161/01.RES.87.12.1123
  5. Hunt JV, Dean RT, Wolff SP: Hydroxy radical production and and autoxidative glycosylation: glucose autoxidation as the cause of protein damage in the experimental glycation model of diabetes mellitus and aging. Biochem J 256:205-12, 1988 https://doi.org/10.1042/bj2560205
  6. Schmidt AM, Hori O, Brett J, Yan SD, Wautler JL, Stern D: Cellular receptors for advanced glycation end products: implications for induction of oxidant stress and cellular dysfunction in the pathogenesis of vascular lesions. Arterioscle Thromb Vasc Biol 14:1521-8, 1994 https://doi.org/10.1161/01.ATV.14.10.1521
  7. Matsubara T, Ziff M: Increased superoxide anion release from human endothelial cells in response to cytokines. J Immunol 137:3295-8, 1986
  8. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW: Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Cir Res 74:1141-8, 1994 https://doi.org/10.1161/01.RES.74.6.1141
  9. Pagano PJ, Chanock SJ, Siwik DA, Colucci WS, Clark JK: Angiotensin II induces p67phox mRNA expression and NADPH oxidase superoxide generation in rabbit aortic adventitial fibroblasts. Hypertension 32:331-7, 1998 https://doi.org/10.1161/01.HYP.32.2.331
  10. Sen CK, Packer L: Antioxidant and redox regulation of gene transcription. FASEB J 10:709-20, 1996 https://doi.org/10.1096/fasebj.10.7.8635688
  11. Li PF, Dietz R, von Harsdorf R: Reactive oxygen species induce apoptosis of vascular smooth muscle cell. FEBS Lett 404:249-52, 1997 https://doi.org/10.1016/S0014-5793(97)00093-8
  12. Maron BJ, Nishimura RA, McKenna WJ, Rakowski J, Josephson ME, Kieval RS: Assessment of permanent dual-chamber pacing as a treatment for drug-refractory symptomatic patients with obstructive hypertrophic cardiomyopathy. Circulation 99:2934-41, 1999 https://doi.org/10.1161/01.CIR.99.22.2934
  13. Westhuyzen J: The oxidation hypothesis of atherosclerosis: An update. Ann Clin Lab Sci 27:1-10, 1997
  14. Ginsberg HN: Insulin resistance and cardiovascular disease. J Clin Invest 106:453-8, 2000 https://doi.org/10.1172/JCI10762
  15. Freener EP, King GL: Vascular dysfunction in diabetic mellitus. Lancet 350(Suppl 1):SI9-13, 1997 https://doi.org/10.1016/S0140-6736(97)90022-2
  16. Paolisso G, Giuglianoc D: Oxidative stress and insulin action: Is there a relationship? Diabetologia 39:357-63, 1996 https://doi.org/10.1007/BF00418354
  17. Gardner CD, Eguchi S, Reynolds CM, Eguchi K, Frank GD, Motley ED: Hydrogen peroxide inhibits insulin signaling in vascular smooth muscle cells. Exp Biol Med 228:836-42, 2003 https://doi.org/10.1177/15353702-0322807-09
  18. Ohara Y, Peterson TX, Sayegh HS, Subramanian RR, Wilcox JN, Harrison DG: Dietary correlation of hypercholesterolemia in the rabbit normalizes endothelial superoxide anion production. Circulation 92:898-903, 1995 https://doi.org/10.1161/01.CIR.92.4.898
  19. Ohara Y, Peterson TE, Harrison DG: Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546-51, 1993 https://doi.org/10.1172/JCI116491
  20. Pourcyrous M, Leffler CW, Bada HS, Korones SB, Busija DW: Brain superoxide anion generation in asphyxiated piglets and the effect of indomethacin at therapeutic dose. Pediatr Res 34:366-69, 1993 https://doi.org/10.1203/00006450-199309000-00025
  21. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS, Pinsky D, Stern D: Enhanced celluar oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269:9889-97, 1994
  22. Son SM, Whalin MK, Harrison DG, Taylor WR, Griendling KK: Oxidative stress and diabetic vascular complications. Curr Diab Rep 4:247-52, 2004 https://doi.org/10.1007/s11892-004-0075-8
  23. Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H: High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49:1939-45, 2000 https://doi.org/10.2337/diabetes.49.11.1939
  24. Zou MH, Shi C, and Cohen RA: High glucose via peroxynitrite causes tyrosine nitration and inactivation of prostacyclin synthase that is associated with TP receptor-mediated apoptosis and adhesion molecule expression in cultured human aortic endothelial cells. Diabetes 51:198-203, 2002 https://doi.org/10.2337/diabetes.51.1.198
  25. Tannous M, Rabini RA, Vignini A, Moretti N, Fumelli P, Zielinski B, Mazzanti L, and Mutus B: Evidence for iNOS-dependent peroxynitrite production in diabetic platelets. Diabetologia 42:539-44, 1999 https://doi.org/10.1007/s001250051192
  26. Ceriello A, Quagliro L, D'Amico M, Di Filippo C, Marfella R, Nappo F, Berrino L, Rossi F, Giugliano D: Acute hyperglycemia induces nitrotyrosine formation and apoptosis in perfused heart from rat. Diabetes 51:1076-82, 2002 https://doi.org/10.2337/diabetes.51.4.1076
  27. Dandona P, Thusu K, Cook S, Snyder B, Makowski J, Armstrong D, Nicotera T: Oxidative damage to DNA in diabetes mellitus. Lancet 347:444-5, 1996 https://doi.org/10.1016/S0140-6736(96)90013-6
  28. Kerr SM, Brosnan MJ, MeIntyre M, Reid JL, Dominiczak AF, Hamilton CA: Superoxide anion production is increased in a model of genetic hypertension: the role of the endothelium. Hypertension 33:1353-8, 1999 https://doi.org/10.1161/01.HYP.33.6.1353
  29. Miller FJ, Gutterman DD, Rios CD, Heistad DD, Davidson BL: Superoxide production in vascular smooth muscle contributes to oxidative stress and impaired relaxation in atherosclerosis. Circ Res 82:1298-305, 1998 https://doi.org/10.1161/01.RES.82.12.1298
  30. Wang HD, Pagano PJ, Du Y, Cayatte AJ, Quinn MT, Brecher P, Cohen RA: Superoxide anion from the adventitia of the rat thoracic aorta inactivates nitric oxide. Circ Res 82:810-8, 1998 https://doi.org/10.1161/01.RES.82.7.810
  31. Cheatham B, Kahn CR: Insulin action and the insulin signaling network. Endocr Rev 16:117-42, 1995
  32. Chen R, Kim O, Yang J: Regulation of Akt/PKB activation by tyrosine phosphorylation. J Biol Chem 276:31858-62, 2001 https://doi.org/10.1074/jbc.C100271200
  33. Sykiotis GP, Papavassiliou AG: Serine phosphorylation of insulin receptor substrate-1; a novel target for the reversal of insulin resistance. Mol Endocrinol 15:1864-9, 2001 https://doi.org/10.1210/me.15.11.1864
  34. Ventre J, Doebber T, Wu M: Targeted disruption of the tumor necrosis factor-alpha gene: metabolic consequences in obese and nonobese mice. Diabetes 46:1526-31, 1997 https://doi.org/10.2337/diabetes.46.9.1526
  35. Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA: Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J Biol Chem 278:8199-211, 2003 https://doi.org/10.1074/jbc.M209153200
  36. Hirata AE, Alvarez-Rojas F, Carvalheira JB, Carvalho CR, Dolnikoff MS, Abdalla Saad MJ: Modulation of IR/PTP1B interaction and downstream signaling in insulin sensitive tissues of MSG-rats. Life Sci 73:1369-81, 2003 https://doi.org/10.1016/S0024-3205(03)00477-6
  37. De Fea K, Roth RA: Protein kinase C modulation of insulin receptor substrate-1 tyrosine phosphorylation requires serine 612. Biochemistry 36:12939-47, 1997 https://doi.org/10.1021/bi971157f
  38. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF: Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem 277:1531-7, 2002 https://doi.org/10.1074/jbc.M101521200
  39. Pederson TM, Kramer DL, Rondinone CM: Serine/threonine phosphorylation of IRS-1 triggers its degradation: possible regulation by tyrosine phosphorylation. Diabetes 50:24-31, 2001 https://doi.org/10.2337/diabetes.50.1.24
  40. Greene MW, Sakaue H, Wang L, Alessi DR, Roth RA: Modulation of insulin-stimulated degradation of human insulin receptor substrate-1 by Serine 312 phosphorylation. J Biol Chem 278:8199-211, 2003 https://doi.org/10.1074/jbc.M209153200
  41. Kaiser N, Sasson S, Freener EP, Boukobza-Vardi N, Higashi S, Moller DE, Davidheiser S, Przybylski RJ, King GL: Differential regulation of glucose transport and transporters by glucose in vascular endothelial and smooth muscle cells. Diabetes 42:80-9, 1993 https://doi.org/10.2337/diabetes.42.1.80
  42. Banz WJ, Abel MA, Zemel MB: Insulin regulation of vascular smooth muscle glucose transport in insulin-sensitive and resistant rats. Horm Metab Res 28:271-5, 1996 https://doi.org/10.1055/s-2007-979790
  43. Gjugliano D, Ceriello A, Paolisso G: Oxidative stress and diabetic vascular complications. Diabetes Care 19:257-67, 1996 https://doi.org/10.2337/diacare.19.3.257
  44. Cai H, Harrison DG: Endothelial dysfunction in cardiovascular disease: the role of oxidant stress. Circ Res 87:840-4, 2000 https://doi.org/10.1161/01.RES.87.10.840
  45. Ceriello A: Oxidative stress and glycemic regulation. Metabolism 49:27-9, 2000 https://doi.org/10.1016/S0026-0495(00)80082-7
  46. Taniyama Y, Hitomi H, Shah A, Alexander W, Griendling KK: Mechanism of reactive oxygen species-dependent downregulation of insulin receptor substrate-1 by angiotensin II. Arterioscler Thromb Vasc Biol. 25:1142-7, 2005 https://doi.org/10.1161/01.ATV.0000164313.17167.df
  47. Seshiah PN, Weber DS, Rocic P, Valppu L, Taniyama Y, Griendling KK: Angiotensin II stimulation of NAD(P)H oxidase activity: upstream mediators. Circ Res 91:406-13, 2002 https://doi.org/10.1161/01.RES.0000033523.08033.16
  48. Taniyama Y, Weber DS, Rocic P, Hilenski L, Akers ML, Park J, Hemmings BA, Alexander RW, Griendling KK: Pyk2- and Src-dependent tyrosine phosphorylation of PDK1 regulates focal adhesions. Mol Cell Biol 23:8019-29, 2003 https://doi.org/10.1128/MCB.23.22.8019-8029.2003
  49. Tokor A and Newton AC: Cellular signaling: pivoting around PDK-1. Cell 103:185-8, 2000 https://doi.org/10.1016/S0092-8674(00)00110-0