Magnetron Reactive Ion Etching of Polycrystalline 3C-SiC Thin Films

Chung, Gwiy-Sang;Ohn, Chang-Min

  • Published : 20071100

Abstract

This paper describes the magnetron reactive ion etching (RIE) characteristics of polycrystalline (poly) 3C-SiC thin films grown on thermally oxidized Si substrates by using atmospheric pressure chemical vapor deposition (APCVD). The etch rate of the poly 3C-SiC thin films was varied from 20 Å/min to 400 Å/min depending on conditions, such as the gas flow rates, the chamber pressure, the RF power, and the electrode gap. The best vertical structures were obtained by the addition of 40 % O₂, 16 % Ar and 44 % CHF₃ reactive gas at a 40-mTorr chamber pressure. Stable etching was achieved at 70 W, and the poly 3C-SiC was undamaged. These results show that in a magnetron RIE system, it is possible to etch SiC with lower power than that of a commercial RIE system. Therefore, poly 3C-SiC etched by magnetron RIE has a potential for applications to be applied to micro/nano electromechanical systems (M/NEMS).

Keywords

References

  1. P. M. Sarro, Sensors & Actuators A 82, 210 (2000)
  2. C. A. Zorman and M. Mehregany, Proc. IEEE 2, 1109 (2002)
  3. L. Jiang, R. Cheung, J. Hedley, M. Hassan, A. J. Harris, J. S. Burdess, M. Mehregany and C. A. Zorman, Sensors & Actuators A 128, 376 (2006) https://doi.org/10.1016/j.sna.2006.01.045
  4. M. Mehregany and C. A. Zorman, Thin Solid Films 355, 518 (1999)
  5. G. S. Chung, S. Y. Chung and S. Nishino, J. KIMMEE 17, 724 (2004)
  6. G. S. Chung, J. Korean Phys. Soc. 45, 1557 (2004)
  7. D. Gao, B. J. Wijesundara, C. Carraro, R. T. Howe and R. Maboudian, IEEE Sensors J. 4, 441 (2004) https://doi.org/10.1109/JSEN.2004.828859
  8. N. Jin, G. Quancheng, S. Guosheng and L. Zhongli, J. Phys.: Conf. Series 34, 511 (2006)
  9. M. Katsuno, N. Ohtani, J. Takahashi, H. Yashiro and M. Kanaya, J. Appl. Phys. 38, 4661 (1999)
  10. Y. Shishkin, W. J. Choyke and R. P. Devaty, J. Appl. Phys. 96, 2311 (2004) https://doi.org/10.1063/1.1768612
  11. F. A. Khan and I. Adesida, Appl. Phys. Lett. 75, 2268 (1999)
  12. M. Imaizumi, Y. Tarui, H. Sungimoto, J. Tanimura, T. Takami and T. Ozeki, Mater. Sci. Forum. 338, 1057 (2000)
  13. P. H. Yih and A. J. Steckl, J. Electrochem. Soc. 142, 312 (1995)
  14. D. Gao, R. T. Howe and R. Maboudian, Appl. Phys. Lett. 82, 1742 (2003) https://doi.org/10.1063/1.1560561
  15. P. Machinma and N. Hershkowitz, Inst. Phys. Publishing 39, 673 (2006)
  16. G. S. Chung and K. S. Kim, J. Korean Phys. Soc. 51, 1389 (2007) https://doi.org/10.3938/jkps.51.1389
  17. V. Y. Plaksn, S. B. Joa and H. J. Lee, J. Korean Phys. Soc. 50, 723 (2007) https://doi.org/10.3938/jkps.50.723
  18. J. L. Vossen and W. Kern, Thin Film Processes (Academic Press, New York, 1978), p. 39
  19. G. S. Chung, J. Korean Phys. Soc. 46, 1152 (2005)
  20. P. H. Yih, V. Sanxena and A. J. Steckl, Phys. Stat. Sol. 202, 605 (1997) https://doi.org/10.1002/pssa.200460717
  21. S. J. Kim, O. J. Oh, S. J. Yu and Y. D. Woo, J. Korean Phys. Soc. 49, 768 (2006)