Effect of Culture Conditions on Canthaxanthin Production by Dietzia natronolimnaea HS-1

  • Khodaiyan Khodaiyan (Department of Food Science and Engineering, Faculty of Biosystem Engineering, University of Tehran) ;
  • Faramarz Faramarz (Department of Food Science and Engineering, Faculty of Biosystem Engineering, University of Tehran) ;
  • Razavi Seyed Hadi (Department of Food Science and Engineering, Faculty of Biosystem Engineering, University of Tehran) ;
  • Emam-Djomeh Zahra (Department of Food Science and Engineering, Faculty of Biosystem Engineering, University of Tehran) ;
  • Mousavi Seyed Mohammad Ali (Department of Food Science and Engineering, Faculty of Biosystem Engineering, University of Tehran) ;
  • Hejazi Mohammad Amin (Department of Microorganism & Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII))
  • Published : 2007.02.28

Abstract

This study investigated the effects of various culture parameters (carbon sources, temperature, initial pH of culture, NaCl concentration, and light) on the growth and canthaxanthin production by Dietzia natronolimnaea HS-1. The results showed that the most effective carbon source for growth and canthaxantin production was glucose, and the best pH and temperature were 7 and $31^{\circ}C$, respectively. In addition, the biomass and canthaxanthin production increased in a medium without NaCl and in the presence of light. Under the optimized conditions, the maximum biomass, total carotenoid, and canthaxanthin production were $6.12{\pm}0.21g/l,\;4.51{\pm}0.20mg/l,\;and\;4.28{\pm}0.15mg/l$, respectively, in an Erlenmeyer flask system, yet increased to 7.25 g/l, 5.48 mg/l, and 5.29 mg/l, respectively, in a batch fermenter system.

Keywords

References

  1. Aksu, Z. and A. T. B. Eren. 2005. Carotenoid production by the yeast Rhodotorula mucilaginosa: Use of agricultural wastes as a carbon source. Process Biochem. 40: 2985-2991 https://doi.org/10.1016/j.procbio.2005.01.011
  2. An, G., D. Schuman, and E. Johnson. 1989. Isolation of Phaffia rhodozyma mutants with increased astaxanthin content. Appl. Environ. Microbiol. 55: 116-124
  3. Arakawa, Y., K. Hashimoto, A. Shibata, and M. Umezu. 1977. Studies on the biosynthesis of carotenoids by microorganism. II. Effect of visible light on the growth and carotenoids production of Flavobacterium sp. TK-70. Hakko Kogaku Kaishi 55: 319-324
  4. Asker, D. and Y. Ohta. 2002. Production of canthaxanthin by Haloferix alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl. Microbiol. Biotechnol. 58: 743-750 https://doi.org/10.1007/s00253-002-0967-y
  5. Asker, D. and Y. Ohta. 1999. Production of canthaxanthin by extremely halophilic bacteria. J. Biosci. Bioeng. 88: 617-621 https://doi.org/10.1016/S1389-1723(00)87089-9
  6. Ausich, R. L. 1997. Commercial opportunities for carotenoid production by biotechnology. Pure Appl. Chem. 69: 2169-2173 https://doi.org/10.1351/pac199769102169
  7. Bhosale, P. and P. S. Bernstein. 2005. Microbial xanthophylls. Appl. Microbiol. Biotechnol. 68: 445-455 https://doi.org/10.1007/s00253-005-0032-8
  8. Bhosale, P. 2004. Environmental and cultural stimulants in the production of carotenoids from microorganisms. Appl. Microbiol. Biotechnol. 63: 351-361 https://doi.org/10.1007/s00253-003-1441-1
  9. Bhosale, P. and R. V. Gadre. 2002. Manipulation of temperature and illumination conditions for enhanced $\beta$- carotene production by mutant 32 of Rhodotorula glutinis. Lett. Appl. Microbiol. 34: 349-353 https://doi.org/10.1046/j.1472-765X.2002.01095.x
  10. Bhosale, P. B. and R. V. Gadre. 2001. Production of $\beta$-carotene by a mutant of Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 55: 423-427 https://doi.org/10.1007/s002530000570
  11. Buzzini, P. 2000. An optimization study of carotenoid production by Rhodotorula glutinis DBVPG 3853 from substrates containing concentrated rectified grape must as the sole carbohydrate source. J. Ind. Microbiol. Biotechnol. 24: 41-45 https://doi.org/10.1038/sj.jim.2900765
  12. De Miguel, T., C. Sieiro, M. Poza, and T. G. Villa, 2000. Isolation and taxonomic study of a new canthaxanthincontaining bacterium, Gordonia jacobaea MV-1 sp. nov. Int. Microbiol. 3: 107-111
  13. Duckworth, A. W., S. Grant, W. D.Grant, B. E. Jones, and D. Meijer. 1998. Dietzia natronolimnaios sp. nov., a new member of the genus Dietzia isolated from an east soda lake. Extremophiles 2: 359-366 https://doi.org/10.1007/s007920050079
  14. Edge, R., D. McGarvey, and T. Truscott. 1997. Carotenoids as antioxidants - a review. J. Photochem. Photobiol. B Biol. 41: 189-200 https://doi.org/10.1016/S1011-1344(97)00092-4
  15. Fong, N., M. Burgess, K. Barrow, and D. Glenn. 2001. Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl. Microbiol. Biotechnol. 56: 750-756 https://doi.org/10.1007/s002530100739
  16. Gordon, H. T. and J. C. Bauernfeind. 1982. Carotenoids as food colorants. Crit. Rev. Food Sci. Nutr. 18: 59-97 https://doi.org/10.1080/10408398209527357
  17. Guyomarch, F., A. Binet, and L. Dufosse. 2000. Production of carotenoids by Brevibacterium linens: Variation among strains, kinetic aspects and HPLC profiles. J. Ind. Microbiol. Biotechnol. 24: 64-70 https://doi.org/10.1038/sj.jim.2900761
  18. Jagannadham, M. V., K. Narayanan, C. M. Rao, and S. Shivaji. 1996. In vivo characteristics and localisation of carotenoid pigments in psychrotrophic and mesophilic Micrococcus roseus using photoacoustic spectroscopy. Biochem. Biophys. Res. Commun. 227: 221-226 https://doi.org/10.1006/bbrc.1996.1493
  19. Johnson, E. A. and W. A. Schroeder. 1996. Microbial carotenoids. Adv. Biochem. Eng. Biotechnol. 53: 119-178
  20. Johnson, E. A. and G. An. 1991. Astaxanthin from microbial sources. Crit. Rev. Biotechnol. 11: 297-326 https://doi.org/10.3109/07388559109040622
  21. Kim, J. H., S. K. Choi, Y. S. Park, C. W. Yun, W. D. Cho, K. M. Chee, and H. I. Chang. 2006. Effect of culture conditions on astaxanthin formation in red yeast Xanthophyllomyces dendrorhous mutant JH1. J. Microbiol. Biotechnol. 16: 438-442
  22. Lorquin, J., F. Molouba, and B. L. Dreyfus. 1997. Identification of the carotenoid pigment canthaxanthin from photosynthetic Bradyrhizobium strains. Appl. Environ. Microbiol. 63: 1151-1154
  23. Margalith, P. Z. 1999. Production of ketocarotenoids by microalgae. Appl. Microbiol. Biotechnol. 51: 431-438 https://doi.org/10.1007/s002530051413
  24. Masetto, A., L. B. Flores-Cotera, C. Diaz, E. Langley, and S. Sanchez. 2001. Application of a complete factorial design for the production of zeaxanthin by Flavobacterium sp. J. Biosci. Bioeng. 92: 55-58 https://doi.org/10.1263/jbb.92.55
  25. Moen, R., T. W. Nolan, and L. P. Provost. 1999. Quality Improvement Through Planned Experimentation, pp. 113. 2nd Ed. McGraw-Hill Professional, New York
  26. Nelis, J. H. and A. P. De Leenheer. 1989. Reinvestigation of Brevibacterium sp. strain KY-4313 as a source of canthaxanthin. Appl. Environ. Microbiol. 55: 2505-2510
  27. Nelis, J. H. and P. A. De Leenheer. 1991. Microbial sources of carotenoid pigments used in foods and feeds. J. Appl. Bacteriol. 70: 181-191 https://doi.org/10.1111/j.1365-2672.1991.tb02922.x
  28. Razavi, S. H. and I. Marc. 2006. Effect of temperature and pH on the growth kinetics and carotenoid production by Sporobolomyces ruberrimus H110 using technical glycerol as carbon source. Iran J. Chem. & Chem. Eng. (In press)
  29. Razavi, S. H., F. Blanchard, and I. Marc. 2006. UV-HPLC/ APCI_MS method for separation and identification of the carotenoids produced by Sporobolomyces ruberrimus H110. Iran J. Chem. Chem. Eng. 25: 1-10
  30. Razavi, S. H. 2004. Determination de conditions de mise en oeuvre d'une souche nouvellement isolee de Sporobolomyces ruberrimus pour la production de torularhodine. PhD Thesis. Institut national polytechnique de lorraine-Laboratoire des science de genie chimique, Nancy, France
  31. Shivaji, S. and M. K. Ray. 1995. Survival strategies of psychrotrophic bacteria and yeast in Antarctica. Indian J. Microbiol. 35: 263-281
  32. Vazquez, M. 2001. Effect of the light on carotenoid profiles of Xanthophyllomyces dendrorhous strains (formerly Phaffia rhodozyma). Food Technol. Biotechnol. 39: 123-128
  33. Veiga-Crespo, P., L. Blasco, et al. 2005. Influence of culture conditions of Gordonia jacobaea MV-26 on canthaxanthin production. Int. Microbiol. 8: 55-58
  34. Zhang, D. H. and Y. K. Lee. 2001. Two-step process for ketocarotenoid production by a green alga, Chlorococcum sp. strain MA-1. Appl. Microbiol. Biotechnol. 55: 537-540 https://doi.org/10.1007/s002530000526