Comparative Proteomic Analyses of the Yeast Saccharomyces cerevisiae KNU5377 Strain Against Menadione-Induced Oxidative Stress

  • Kim, Il-Sup (epartment of Microbiology, Kyungpook National University) ;
  • Yun, Hae-Sun (Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institute of Health) ;
  • Jin, In-Gnyol (Department of Microbiology, Kyungpook National University)
  • Published : 2007.02.28

Abstract

The Saccharomyces0 cerevisiae KNU5377 strain, which was isolated from spoilage in nature, has the ability to convert biomass to alcohol at high temperatures and it can resist against various stresses [18, 19]. In order to understand the defense mechanisms of the KNU5377 strain under menadione (MD) as oxidative stress, we used several techniques for study: peptide mass fingerprinting (PMF) by matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) followed by two-dimensional (2D) gel electrophoresis, liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS), and surface-enhanced laser desorption ionization-time of flight (SELDI-TOF) technology. Among the 35 proteins identified by MALDI-TOF MS, 19 proteins including Sod1p, Sod2p, Tsa1p, and Ahp1p were induced under stress condition, while 16 proteins were augmented under normal condition. In particular, five proteins, Sod1p, Sod2p, Ahp1p, Rib3p, Yaf9p, and Mnt1p, were induced in only stressed cells. By LC-ESI-MS/MS analysis, 37 proteins were identified in normal cells and 49 proteins were confirmed in the stressed cells. Among the identified proteins, 32 proteins were found in both cells. Five proteins including Yel047cp and Met6p were only upregulated in the normal cells, whereas 17 proteins including Abp1P and Sam1p were elevated in the stressed cells. It was interesting that highly hypothetical proteins such as Ynl281wp, Ygr279cp, Ypl273wp, Ykl133cp, and Ykr074wp were only expressed in the stressed cells. SELDI-TOF analysis using the SAX2 and WCX2 chips showed that highly multiple-specific protein patterns were reproducibly detected in ranges from 2.9 to 27.0 kDa both under normal and stress conditions. Therefore, induction of antioxidant proteins, hypothetical proteins, and low molecular weight proteins were revealed by different proteomic techniques. These results suggest that comparative analyses using proteomics might contribute to elucidate the defense mechanisms of KNU5377 under MD stress.

Keywords

References

  1. Bassett, D. E. Jr., M. S. Boguski, and P. Hieter. 1996. Yeast genes and human disease. Nature 379: 589-590 https://doi.org/10.1038/379589a0
  2. Bilinski, J., Z. Krawiec, A. Liczmanski, and J. Litwinska. 1995. Is hydroxyl radical generated by the Fenton reaction in vivo? Biochem. Biophys. Res. Commun. 130: 533- 539 https://doi.org/10.1016/0006-291X(85)90449-8
  3. Bro, C., B. Regenberg, G. Lagniel, J. Labarre, M. Montero- Lomelí, and J. Nielsen. 2003. Transcriptional, proteomic, and metabolic responses to lithium in galactose-grown yeast cells. J. Biol. Chem. 278: 32141-32149 https://doi.org/10.1074/jbc.M304478200
  4. Cabiscol, E., E. Piulats, P. Echave, E. Herrero, and J. Ros. 2000. Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. J. Biol. Chem. 275: 27393- 27398
  5. Chae, H., I. H. Kim, K. Kim, and S. Rhee. 1993. Cloning, sequencing and mutation of thiol specific antioxidant gene of Saccharomyces cerevisiae. J. Biol. Chem. 268: 16815- 16821
  6. Costa, V. and P. Moradas-Ferreira. 2001. Oxidative stress and signal transduction in Saccharomyces cerevisiae: Insights into ageing, apoptosis and diseases. Mol. Aspects Med. 22: 217-246 https://doi.org/10.1016/S0098-2997(01)00012-7
  7. de Nobel, H., L. Lawrie, S. Brul, F. Klis, M. Davis, H. Alloush, and P. Coote. 2001. Parallel and comparative analysis of the proteome and transcriptome of sorbic acidstressed Saccharomyces cerevisiae. Yeast 18: 1413-1428 https://doi.org/10.1002/yea.793
  8. Derek, J. J. 1998. Oxidative stress responses of the Saccharomyces cerevisiae. Yeast 14: 1511-1527 https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  9. Godon, C., G. Lagniel, J. W. Lee, J. M. Buhler, S. Kieffer, M. Perrot, H. Boucherie, M. B. Toledano, and J. Labarre. 1998. The $H_{2}O_{2}$ stimulon in Saccharomyces cerevisiae. J. Biol. Chem. 273: 22480-22489 https://doi.org/10.1074/jbc.273.35.22480
  10. Graeme, M. W. 1998. Yeast growth, pp. 167-169. In M. W. Graeme (ed.), Yeast Physiology and Biotechnology. John Wiley & Sons Ltd, Chichester
  11. Gralla, E. B. and J. S. Valentine. 1991. Null mutants of Saccharomyces cerevisiae Cu, Zn superoxide dismutase: Characterization and spontaneous mutation rates. J. Bacteriol. 173: 5918-5920 https://doi.org/10.1128/jb.173.18.5918-5920.1991
  12. Hamdan, M. and P. G. Righetti. 2005. Proteomics Today: Protein Assessment and Biomarkers Using Mass Spectrometry, 2D Electrophoresis, and Microarray Technology, pp. 69- 126. John Wiley & Sons, Inc., Hoboken, New Jersey, U.S.A
  13. Issaq, H. J., T. D. Veenstra, T. P. Conrads, and D. Felschow. 2002. The SELDI-TOF MS approach to proteomics: Protein profiling and biomarker identification. Biochem. Biophys. Res. Commun. 292: 587-592 https://doi.org/10.1006/bbrc.2002.6678
  14. Jamnik, P. and P. Raspor. 2005. Methods for monitoring oxidative stress response in yeasts. J. Biochem. Mol. Toxicol. 19: 195-203 https://doi.org/10.1002/jbt.20091
  15. Keightley, J. A., L. Shang, and M. Kinter. 2004. Proteomic analysis of oxidative stress-resistant cells: A specific role for aldolase reductase overexpression in cytoprotection. Mol. Cell. Proteomics 3: 167-175 https://doi.org/10.1074/mcp.M300119-MCP200
  16. Kim, I. S., H. S. Yun, H. Iwahashi, and I. N. Jin. 2006. Genome-wide expression analyses of adaptive response against MD-induced oxidative stress in Saccharomyces cerevisiae KNU5377. Process Biochem. 41: 2305-2313 https://doi.org/10.1016/j.procbio.2006.06.005
  17. Kim, I. S., H. S. Yun, H. Shimisu, E. Kitakawa, H. Iwahashi, and I. N. Jin. 2005. Elucidation of copper and asparagine transport systems in Saccharomyces cerevisiae KNU5377 through genome-wide transcriptional analysis. J. Microbiol. Biotechnol. 15: 1240-1249
  18. Kim, J. W., I. N. Jin, and J. H. Seu. 1995. Isolation of Saccharomyces cerevisiae F38-1, a thermotolerant for fuel alcohol production at higher temperature. Kor. J. Appl. Microbiol. Biotechnol. 23: 617-623
  19. Kim, J. W., S. H. Kim, and I. N. Jin. 1995. The fermentation characteristics of Saccharomyces cerevisiae F38-1, a thermotolerant yeast isolated for fuel alcohol production at elevated temperature. Kor. J. Appl. Microbiol. Biotechnol. 23: 624-631
  20. Kolkman, A., M. Slijper, and A. Heck. 2005. Development and application of proteomics technologies in Saccharomyces cerevisiae. Trends Biotechnol. 23: 598-604 https://doi.org/10.1016/j.tibtech.2005.09.004
  21. Laemmli, U. K. 1979. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  22. Lee, J., D. Spector, C. Godon, J. Labarre, and M. B. Tolendano. 1996. A new antioxidant with alkyl hydroperoxide defense properties in yeast. J. Biol. Chem. 274: 4537-4544 https://doi.org/10.1074/jbc.274.8.4537
  23. Lieu, H. Y., H. S. Song, S. N. Yang, J. H. Kim, H. J. Kim, Y. D. Park, G. S. Park, and H. Y. Kim. 2006. Identification of proteins affected by iron in Saccharomyces cerevisiae using proteome analysis. J. Microbiol. Biotechnol. 16: 946-951
  24. Paik, S. K., H. S. Yun, H. Iwahashi, K. Obuchi and I. N. Jin. 2003. Effect of trehalose on stabilization of cellular components and critical target against heat shock in Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 15: 965- 970
  25. Paik, S. K., H. S. Yun, H. S. Sohn, and I. N. Jin. 2003. Effect of trehalose accumulation on the intrinsic and acquired thermotolerance in a natural isolate, Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 13: 85-89
  26. Park, S. G., M. K. Cha, W. Jeong, and I. H. Kim. 2000. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275: 5723- 5732 https://doi.org/10.1074/jbc.275.8.5723
  27. Patterson, S. D. and R. H. Aebersold. 2003. Proteomics: The first decade and beyond. Nat. Genet. 33: 311-323 https://doi.org/10.1038/ng1106
  28. Pereira, M. D., E. C. Eleutherio, and A. D. Panek. 2001. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 1: 11 https://doi.org/10.1186/1471-2180-1-11
  29. Rehman, I., A. Azzouzi, J. Catto, and F. Hamdy. 2005. The use of proteomics in urological research. EAU Update Series 3: 171-179 https://doi.org/10.1016/j.euus.2005.09.002
  30. Toledano, M. B., A. Delaunay, B. Biteau, D. Spector, and D. Azevedo. 2003. Oxidative stress responses in yeast, pp. 241-304. In S. Hohnman, and E. H. Mager (eds.), Yeast Stress Responses. Springer-Verlag, Berlin
  31. Vido, K., D. Spector, G. Lagniel, S. Lopez, M. B. Toledano, and J. Labarre. 2001. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276: 8469-8474 https://doi.org/10.1074/jbc.M008708200
  32. Walker, G. M. and P. V. Dijck. 2006. Physiological and molecular responses of yeasts to the environment, pp. 111- 152. In A. Querol and G. Fleet (eds.), Yeasts in Food and Beverages. Springer-Verlag, Berlin
  33. Wei, J., J. Sun, W. Yu, A. Jones, P. Oeller, M. Keller, G. Woodnutt, and J. M. Short. 2005. Global proteome discovery using an online three-dimensional LC-MS/MS. J. Proteome Res. 4: 801-808 https://doi.org/10.1021/pr0497632
  34. Weinberger, S. R., E. Boschetti, P. Santambien, and V. Brenac. 2002. Surface-enhanced laser desorption-ionization retentate chromatographyTM mass spectrometry (SELDI-RCMS): A new method for rapid development of process chromatography conditions. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 782: 307-316 https://doi.org/10.1016/S1570-0232(02)00564-0
  35. Wenzel, T. J., A. Teunissen, and H. Steensma. 1995. PDA1 mRNA: A standard for quantitation of mRNA in Saccharomyces cerevisiae superior to ACT1 mRNA. Nucleic Acids Res. 23: 883-884 https://doi.org/10.1093/nar/23.5.883
  36. Wilson, M. A., C. V. St. Amour, J. L. Collins, D. Ringe, and G. A. Petsko. 2004. The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: A member of the DJ-1/ThiJ/PfpI superfamily. Proc. Natl. Acad. Sci. USA 101: 1531-1536
  37. Yin, Z., D. Stead, L. Selway, J. Walker, I. Riba-Garcia, T. Mclnerney, S. Gaskell, S. G. Oliver, P. Cash, and A. J. Brown. 2004. Proteomic response to amino acid starvation in Candida albicans and Saccharomyces cerevisiae. Proteomics 4: 2425-2436 https://doi.org/10.1002/pmic.200300760
  38. Yun, H. S., S. K. Paik, I. S. Kim, I. N. Jin, and H. Y. Sohn. 2004. Direct evidence of intracellular alkalization in Saccharomyces cerevisiae KNU5377 exposed to inorganic sulfuric acid. J. Microbiol. Biotechnol. 14: 243-249