Phosphatidylcholine is Required for the Efficient Formation of Photosynthetic Membrane and B800-850 Light-Harvesting Complex in Rhodobacter sphaeroides

  • Kim, Eui-Jin (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University) ;
  • Kim, Mi-Sun (Biomass Research Team, Korea Institute of Energy Research) ;
  • Lee, Jeong-K. (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
  • Published : 2007.02.28

Abstract

No phosphatidylcholine (PC) was detected in the membrane of Rhodobacter sphaeroides pmtA mutant (PmtAl) lacking phosphatidylethanolamine (PE) N-methyltransferase, whereas PE in the mutant was increased up to the mole % comparable to the combined level of PE and PC of wild type. Neither the fatty acid composition nor the fluidity of membrane was altered by pmtA mutation. Consistently, aerobic and photoheterotrophic growth of PmtAl were not different from wild type. However, PmtAl showed an extended lag phase (15 h) after the growth transition from aerobic to photoheterotrophic conditions, indicating the PC requirement for the efficient formation of intracytoplasmic membrane (ICM). Interestingly, the B800-850 complex of PmtAl was decreased more than twofold in comparison with wild type, whereas the level of the B875 complex comprising the fixed photosynthetic unit was not changed. Since puc expression is not affected by pmtA mutation, PC appears to be required for the proper formation of the B800-850 complex in the ICM of R. sphaeroides.

Keywords

References

  1. Aricha, B., I. Fishov, Z. Cohen, N. Sikron, S. Pesakhov, I. Khozin-Goldberg, R. Dagan, and N. Porat. 2004. Differences in membrane fluidity and fatty acid composition between phenotypic variants of Streptococcus pneumoniae. J. Bacteriol. 186: 4638-4644 https://doi.org/10.1128/JB.186.14.4638-4644.2004
  2. Arondel, V., C. Benning, and C. R. Somerville. 1993. Isolation and functional expression in Escherichia coli of a gene encoding phosphatidylethanolamine methyltransferase (EC 2.1.1.17) from Rhodobacter sphaeroides. J. Biol. Chem. 268: 16002-16008
  3. Baek, C. H. and K. S. Kim. 2003. lacZ- and aph-based reporter vectors for in vivo expression technology. J. Microbiol. Biotechnol. 13: 872-880
  4. Benning, C. and C. R. Somerville. 1992. Isolation and genetic complementation of a sulfolipid-deficient mutant of Rhodobacter sphaeroides. J. Bacteriol. 174: 2352-2360
  5. Chory, J., T. J. Donohue, A. R. Varga, L. A. Staehelin, and S. Kaplan. 1984. Induction of the photosynthetic membranes of Rhodopseudomonas sphaeroides: Biochemical and morphological studies. J. Bacteriol. 159: 540-554
  6. Davis, J., T. J. Donohue, and S. Kaplan. 1988. Construction, characterization, and complementation of a Puf-mutant of Rhodobacter sphaeroides. J. Bacteriol. 170: 320-329 https://doi.org/10.1128/jb.170.1.320-329.1988
  7. Donohue, T. J., A. G. McEwan, and S. Kaplan. 1986. Cloning, DNA sequence, and expression of the Rhodobacter sphaeroides cytochrome c2 gene. J. Bacteriol. 168: 962- 972 https://doi.org/10.1128/jb.168.2.962-972.1986
  8. Jeffke, T., N. H. Gropp, C. Kaiser, C. Grzesik, B. Kusian, and B. Bowein. 1999. Mutational analysis of the cbb operon ($CO_{2}$ assimilation) promoter of Ralstonia eutropha. J. Bacteriol. 181: 4374-4380
  9. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70: 191-197 https://doi.org/10.1016/0378-1119(88)90117-5
  10. Kho, D. H., S. B. Yoo, J. S. Kim, E. J. Kim, and J. K. Lee. 2004. Characterization of Cu- and Zn-containing superoxide dismutase of Rhodobacter sphaeroides. FEMS Microbiol. Lett. 234: 261-267 https://doi.org/10.1111/j.1574-6968.2004.tb09542.x
  11. Kim, D. S., Y. I. Park, H. B. Lee, and Y. Kim. 2005. Efficient expression of a carbon starvation promoter activity under nutrient-limited chemostat culture. J. Microbiol. Biotechnol.15: 678-682
  12. Kim, E. J., S. B. Yoo, M. S. Kim, and J. K. Lee. 2005. Improvement of photoheterotrophic hydrogen production of Rhodobacter sphaeroides by removal of B800-850 lightharvesting complex. J. Microbiol. Biotechnol. 15: 1115- 1119
  13. Lee, H. J., J. K. Rho, and C. Y. Sung. 2004. Growth temperature-dependent conversion of de novo-synthesized unsaturated fatty acids into polyhydroxyalkanoic acid and membrane cyclopropane fatty acids in the psychrotrophic bacterium Pseudomonas fluorescens BM07. J. Microbiol. Biotechnol. 14: 1217-1226
  14. Lee, J. K. and S. Kaplan. 1992. Isolation and characterization of trans-acting mutations involved in oxygen regulation of puc operon transcription in Rhodobacter sphaeroides. J. Bacteriol. 174: 1158-1171 https://doi.org/10.1128/jb.174.4.1158-1171.1992
  15. Lee, K. E., D. K. Park, C. H. Baek, W. Hwang, and K. S. Kim. 2006. repABC-type replicator region of megaplasmid pAtC58 in Agrobacterium tumefaciens C58. J. Microbiol. Biotechnol. 16: 118-125
  16. Lenz, O., E. Schwartz, J. Dernedde, M. Eitinger, and B. Friedrich. 1994. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J. Bacteriol. 176: 4385-4393 https://doi.org/10.1128/jb.176.14.4385-4393.1994
  17. Martinez-Morales, F., M. Schobert, I. M. Lopez-Lara, and O. Geiger. 2003. Pathways for phosphatidylcholine biosynthesis in bacteria. Microbiology 149: 3461-3471 https://doi.org/10.1099/mic.0.26522-0
  18. Meinhardt, S. W., P. J. Kiley, S. Kaplan, A. R. Crofts, and S. Harayama. 1985. Characterization of light-harvesting mutants of Rhodopseudomonas sphaeroides. I. Measurement of the efficiency of energy transfer from light-harvesting complexes to the reaction center. Arch. Biochem. Biophys. 236: 130-139 https://doi.org/10.1016/0003-9861(85)90612-5
  19. Moon, M. W., J. K. Lee, T. K. Oh, C. S. Shin, and H. K. Kim. 2006. Gene cloning of Streptomyces phospholipase D P821 suitable for synthesis of phosphatidylserine. J. Microbiol. Biotechnol. 16: 408-413
  20. Oh, J. I. and S. Kaplan. 2001. Generalized approach to the regulation and integration of gene expression. Mol. Microbiol. 39: 1116-1123 https://doi.org/10.1111/j.1365-2958.2001.02299.x
  21. Prentki, P. and H. M. Krisch. 1984. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29: 303-313 https://doi.org/10.1016/0378-1119(84)90059-3
  22. Raetz, C. R. and W. Dowhan. 1990. Biosynthesis and function of phospholipids in Escherichia coli. J. Biol. Chem. 265: 1235-1238
  23. Russell, N. J., J. K. Coleman, T. D. Howard, E. Johnston, and R. J. Cogdell. 2002. Rhodopseudomonas acidophila strain 10050 contains photosynthetic LH2 antenna complexes that are not enriched with phosphatidylglycerol, and the phospholipids have a fatty acyl composition that is unusual for purple non-sulfur bacteria. Biochim. Biophys. Acta 1556: 247-253 https://doi.org/10.1016/S0005-2728(02)00369-9
  24. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., U.S.A
  25. Sistrom, W. R. 1962. The kinetics of the synthesis of photopigments in Rhodopseudomonas sphaeroides. J. Gen. Microbiol. 28: 607-616 https://doi.org/10.1099/00221287-28-4-607
  26. Sohlenkamp, C., I. M. Lopez-Lara, and O. Geiger. 2003. Biosynthesis of phosphatidylcholine in bacteria. Prog. Lipid Res. 42: 115-162
  27. Tai, T. N., W. A. Havelka, and S. Kaplan. 1988. A broadhost- range vector system for cloning and translational lacZ fusion analysis. Plasmid 19: 175-188 https://doi.org/10.1016/0147-619X(88)90037-6
  28. Tehrani, A., R. C. Prince, and J. T. Beatty. 2003. Effects of photosynthetic reaction center H protein domain mutations on photosynthetic properties and reaction center assembly in Rhodobacter sphaeroides. Biochemistry 42: 8919-8928 https://doi.org/10.1021/bi0346650
  29. Vincent, M., L. S. England, and J. T. Trevors. 2004. Cytoplasmic membrane polarization in Gram-positive and Gram-negative bacteria grown in the absence and presence of tetracycline. Biochim. Biophys. Acta 1672: 131-134 https://doi.org/10.1016/j.bbagen.2004.03.005