Metal Nanoparticles in the Template of Poly(2-ethyl-2-oxazoline)-block-Poly(${\varepsilon}$-caprolactone) Micelle

  • Park, Chi-Young (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Research Center, Inha University) ;
  • Rhue, Mi-Kyo (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Research Center, Inha University) ;
  • Lim, Jin-O (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Research Center, Inha University) ;
  • Kim, Chul-Hee (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Research Center, Inha University)
  • Published : 2007.02.28

Abstract

The amphiphilic block copolymer (PEtOz-PCL) of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(${\varepsilon}$-caprolactone) (PCL) formed spherical micellar structures with an average diameter of 26 nm in aqueous phase. Au and Pd nanoparticles with an average diameter of $2{\sim}3nm$ were prepared by using the PEtOz-PCL micelle consisting of a PEtOz shell and PCL core. The Au nanoparticles of PEtOz-PCL micelles in aqueous phase could be transferred into organic phase by using n-dodecanethiol. The use of the Pd-NP/PEtOz-PCL micelle as a nanoreactor for Suzuki cross-coupling reaction was investigated.

Keywords

References

  1. V. Rotello, Nanoparticles, Kluwer Academic/Plenum Publishers, New York, 2004
  2. M. -C. Daniel and D. Astruc, Chem. Rev., 104, 293 (2004)
  3. R. M. Crooks, M. Zhao, L. Sun, V. Chechik, and L. K. Yeung, Acc. Chem. Res., 34, 181 (2001) https://doi.org/10.1021/ar000113n
  4. R. van Heerbeek, P. C. J. Kamer, P. W. N. M. van Leeuwen, and J. N. H. Reek, Chem. Rev., 102, 3717 (2002)
  5. M. Moreno-Manas and R. Pleixats, Acc. Chem. Res., 36, 638 (2003)
  6. A. C. Templeton, W. P. Wuelfing, and R. W. Murray, Acc. Chem. Res., 33, 27 (2000)
  7. R. Djalali, J. Samson, and H. Matsui, J. Am. Chem. Soc., 126, 7935 (2004) https://doi.org/10.1021/ja037954k
  8. T. Shimizu, M. Masuda, and H. Minamikawa, Chem. Rev., 105, 1401 (2005)
  9. F. J. M. Hoeben, P. Jonkheijm, E. W. Meijer, and A. P. H. J. Schenning, Chem. Rev., 105, 1491 (2005)
  10. S. C. Lee, Y. Chang, J. -S. Yoon, C. Kim, I. C. Kwon, Y. -H. Kim, and S. Y. Jeong, Macromolecules, 32, 1847 (1999)
  11. C. Kim, S. C. Lee, S. W. Kang, I. C. Kwon, and S. Y. Jeong, J. Polym. Sci.; Part B: Polym. Phys., 38, 2400 (2000)
  12. C. Kim, S. C. Lee, J. H. Shin, J. -S. Yoon, I. C. Kwon, and S. Y. Jeong, Macromolecules, 33, 7448 (2000)
  13. C. Kim, S. C. Lee, I. C. Kwon, H. Chung, and S. Y. Jeong, Macromolecules, 35, 193 (2002) https://doi.org/10.1021/ma011278u
  14. A. Harada and K. Kataoka, Macromolecules, 28, 5294 (1995)
  15. A. Harada and K. Kataoka, Macromolecules, 31, 288 (1998)
  16. M. Wilhelm, C.-L. Zhao, Y. Wang, R. Xu, M. A. Winnik, J.-L. Mura, G. Riess, and M. D. Croucher, Macromolecules, 24, 1033 (1991)
  17. M. Rusa, J. K. Whitesell, and M. A. Fox, Macromolecules, 37, 2766 (2004)
  18. J. C. Garcia-Martinez, R. W. J. Scott, and R. M. Crooks, J. Am. Chem. Soc., 125, 11190 (2003)
  19. J. C. Garcia-Martinez and R. M. Crooks, J. Am. Chem. Soc., 126, 16170 (2004)
  20. O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, and R. M. Crooks, Chem. Mater., 16, 4202 (2004)
  21. S. Underwood and P. Mulvaney, Langmuir, 10, 3427 (1994) https://doi.org/10.1021/la00016a005
  22. A. C. Templeton, J. J. Pietron, R. W. Murray, and P. Mulvaney, J. Phys. Chem. B, 104, 564 (2000)
  23. L. Strimbu, J. Liu, and A. E. Kaifer, Langmuir, 19, 483 (2003)
  24. J. Liu, J. Alvarez, W. Ong, E. Román, and A. E. Kaifer, Langmuir, 17, 6762 (2001) https://doi.org/10.1021/la0010572
  25. N. Miyaura and A. Suzuki, Chem. Rev., 95, 2457 (1995)
  26. Y. Li and M. A. El-Sayed, J. Phys. Chem. B, 105, 8938 (2001)