Differential Response of Etiolated Pea Seedlings to Inoculation with Rhizobacteria Capable of Utilizing 1-Aminocydopropane-1-Carboxylate or L-Methionine

  • Shaharoona, Baby (Institute of Soil and Environmental Sciences, University of Agriculture) ;
  • Arshad, Muhammad (Institute of Soil and Environmental Sciences, University of Agriculture) ;
  • Khalid, Azeem (Institute of Soil and Environmental Sciences, University of Agriculture)
  • Published : 2007.02.22

Abstract

The majority of soil microorganisms can derive ethylene from L-methionine (L-MET), while some rhizobacteria can hydrolyze 1-aminocyclopropane-1-carboxylate (ACC) due to their ACC-deaminase activity. In this study, three strains having either ACC-deaminase activity (Pseudomonas putida biotype A, $A_7$), or the ability to produce ethylene from L-MET (Acinetobacter calcoaceticus, $M_9$) or both (Pseudomonas fluorescens, $AM_3$) were used for inoculation. The highly ethylene specific bioassay of a classical 'triple' response in pea seedlings was used to investigate the effect of the inoculation with the rhizobacteria in the presence of 10 mM ACC or L-MET. The exogenous application of ACC had a concentration-dependent effect on the etiolated pea seedlings in creating the classical 'triple' response. The inoculation with P. putida diluted the effect of ACC, which was most likely due to its ACC-deaminase activity. Similarly, the application of $Co^{2+}$ reduced the ACC-imposed effect on etiolated pea seedlings. In contrast, the inoculation of A. calcoaceticus or P. fluorescens in the presence of L-MET caused a stronger classical 'triple' response in etiolated pea seedlings; most likely by producing ethylene from L-MET. This is the first study, to our knowledge, reporting on the comparative effect of rhizobacteria capable of utilizing ACC vs L-MET on etiolated pea seedlings.

Keywords

References

  1. Abeles, F.B., P.W. Morgan, and M.E. Saltveit, Jr. 1992. Ethylene in plant biology. 2nd ed. Academic Press, San Diego, CA, USA
  2. Akhtar, M.J., M. Arshad, A. Khalid, and M.H. Mahmood. 2005. Substrate-dependent biosynthesis of ethylene by rhizosphere soil fungi and its influence on etiolated pea seedlings. Pedobiologia 49, 211-219 https://doi.org/10.1016/j.pedobi.2004.10.006
  3. Arshad, M. and W.T. Frankenberger, Jr. 1988. Influence of ethylene produced by soil microorganisms on etiolated pea seedlings. Appl. Environ. Microbiol. 54, 2728-2732
  4. Arshad, M. and W.T. Frankenberger, Jr. 1998. Plant-growth regulating substances in the rhizosphere: microbial production and functions. Adv. Agron. 62, 145-151
  5. Arshad, M. and W.T. Frankenberger, Jr. 2002. Ethylene: agricultural sources and applications. Kluwer Academic Publishers, New York, USA
  6. Barry, C.S., E.A. Fox, H. Yen, S. Lee, T. Ying, D. Grierson, and J.J. Giovannoni. 2001. Analysis of ethylene response in the epinastic mutant of tomato. Plant Physiol. 127, 58-66 https://doi.org/10.1104/pp.127.1.58
  7. Belimov, A.A., V.I. Safronova, and T. Mimura. 2002. Response of spring rape (Brassica napus var. oleifera L.) to inoculation with plant growth promoting rhizobacteria containing-1-aminocyclopropane-1-carboxylate deaminase depends on nutrient status of the plant. Can. J. Microbiol. 48, 189-199 https://doi.org/10.1139/w02-007
  8. Bleecker, A.B., M.A. Estelle, C. Sommeruille, and H. Kende. 1988. Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241, 1086-1089 https://doi.org/10.1126/science.241.4869.1086
  9. Chen, Q.C. and A.B. Bleecker. 1995. Analysis of ethylene signaltransduction kinetic associated with seedling-growth response and chitinase induction in wild type and mutant Arabidopsis. Plant Physiol. 108, 597-607 https://doi.org/10.1104/pp.108.2.597
  10. Dworkin, M. and J. Foster. 1958. Experiments with some microorganisms which utilize ethane and hydrogen. J. Bacteriol. 75, 592-601
  11. Flores-Vargas, R.D. and G.W. O'Hara. 2006. Isolation and characterization of rhizosphere bacteria with potential for biological control of weeds in vineyards. J. Appl. Microbiol. 100, 946-954 https://doi.org/10.1111/j.1365-2672.2006.02851.x
  12. Ghosh, S., J.N. Penterman, R.D. Little, R. Chavez, and B.R. Glick. 2003. Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola, Brassica campestris. Plant Physiol. Biochem. 41, 277-281 https://doi.org/10.1016/S0981-9428(03)00019-6
  13. Glick, B.R., D.M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growthpromoting bacteria. J. Theor. Biol. 190, 63-68 https://doi.org/10.1006/jtbi.1997.0532
  14. Guzman, P. and J.R. Ecker. 1990. Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Am. Soc. Plant Physiol. 2, 513-523
  15. Ince, J.E. and C.J. Knowles. 1986. Ethylene formation by cell free extract of Escherichia coli. Arch. Microbiol. 146, 151-158 https://doi.org/10.1007/BF00402343
  16. Jia, Y.J, Y. Kakuta, M. Sugawara, T. Igarashi, N. Oki, M. Kisaki, T. Shoji, Y. Kanetuna, T. Horita, H. Matsui, and M. Honma. 1999. Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium ctrinum. Biosci. Biotechnol. Biochem. 63, 542-549 https://doi.org/10.1271/bbb.63.542
  17. Khalid, A., M.J. Akhtar, M.H. Mahmood, and M. Arshad. 2006. Effect of substrate-dependent microbial produced ethylene on plant growth. Microbiology 75, 231-236 https://doi.org/10.1134/S0026261706020196
  18. Khalid, A., M. Arshad, and Z.A. Zahir. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. J. Appl. Microbiol. 96, 473-480 https://doi.org/10.1046/j.1365-2672.2003.02161.x
  19. Li, J., D.H. Ovakim, T.C. Charles, and B.R. Glick. 2000. An ACC deaminase minus mutant of Enterobacter cloacae UW4 no longer promotes root elongation. Curr. Microbiol. 41, 101-105 https://doi.org/10.1007/s002840010101
  20. Lurssen, K., K. Naumann, and R. Schroder. 1979. 1-Aminocyclopropane-1-carboxylic acid an intermediate of the ethylene biosynthesis in higher plants. Z. Pflanzenphysiol. 92, 285-294 https://doi.org/10.1016/S0044-328X(79)80011-2
  21. McKeon, T.A., N.E. Hoffmann, and S.F. Yang. 1982. The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-1-carboxylic acid in waterstressed wheat leaves. Planta 155, 437-443 https://doi.org/10.1007/BF00394473
  22. McKeon, T.A., J.C. Fernandez-Maculet, and S.F. Yang. 1995. Biosynthesis and metabolism of ethylene, p. 118-139. In P.J. Davies (ed.), Plant Hormones, Physiology, Biochemistry and Molecular Biology-1995. Kluwer Academic Publishers, Dordrecht, Netherlands
  23. Nagatsu, T. and K. Yagi. 1966. A simple assay of monoamine oxidase and D-amino acid oxidase by measuring ammonia. J. Biochem. 60, 219-221 https://doi.org/10.1093/oxfordjournals.jbchem.a128422
  24. Nazli, Z.H., M. Arshad, and A. Khalid. 2003. 2-Keto-4-methylthiobutyric acid-dependent biosynthesis of ethylene in soil. Biol. Fertil. Soils 37, 130-135
  25. Neljubow, D. 1901. Uber die horizontale nutation der stengel von Pisum sativum und einiger anderer pflanzen. Beih. Bot. Zentralbl. 10, 128-138
  26. Penrose, D.M. and B.R. Glick. 2001. Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can. J. Microbiol. 41, 368-372
  27. Primrose, S.B. 1977. Evaluation of the role of methional, 2-keto-4-methylthiobutyric acid and peroxidase in ethylene formation by Escherichia coli. J. Gen. Mircrobiol. 98, 519-528 https://doi.org/10.1099/00221287-98-2-519
  28. Reid, M.S. 1995. Ethylene in plant growth, development and senescence, p. 486-508. In P.J. Davies (ed.), Plant Hormone, Physiology, Biochemistry and Molecular Biology. Kluwer Academic Publishers, Dordrecht, Netherlands
  29. Shaharoona, B., M. Arshad, and Z.A. Zahir. 2006a. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett. Appl. Microbiol. 42, 155-159 https://doi.org/10.1111/j.1472-765X.2005.01827.x
  30. Shaharoona, B., M. Arshad, Z.A. Zahir, and A. Khalid. 2006b. Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol. Biochem. 38, 2971-2975 https://doi.org/10.1016/j.soilbio.2006.03.024
  31. Simons, M., A.J. van der Bij, I. Brand, L.A. de Weger, C.A. Wijffelman, and B.J.J. Lugtenberg. 1996. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol. Plant-Microbe Interact. 9, 600-607 https://doi.org/10.1094/MPMI-9-0600
  32. Ton, J., S. Davison, S.C.M. van Wees, L.C. van Loon, and C.M.J. Pieterse. 2001. The Arabidopsis ISRI locus controlling rhizobacteria- mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 125, 652--661 https://doi.org/10.1104/pp.125.2.652
  33. Wang, C., E. Knill, B.R. Glick, and G. Defagox. 2000. Effect of transferring 1-aminocycloproane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth promoting and disease suppressive capacities. Can. J. Microbiol. 46, 898-907 https://doi.org/10.1139/cjm-46-10-898