The Antimicrobial Activity of Essential Oil from Dracocephalum foetidum against Pathogenic Microorganisms

  • Lee, Saet-Byoul (Natural Products Research Center, KIST Gangneung Institute, Gangneung Techno Valley) ;
  • Cha, Kwang-Hyun (Natural Products Research Center, KIST Gangneung Institute, Gangneung Techno Valley) ;
  • Kim, Su-Nam (Natural Products Research Center, KIST Gangneung Institute, Gangneung Techno Valley) ;
  • Altantsetseg, Shataryn (Institute of Chemical and Chemical Technology) ;
  • Shatar, Sanduin (Institute of Chemical and Chemical Technology) ;
  • Sarangerel, Oidovsambuu (Mongolian National University) ;
  • Nho, Chu-Won (Natural Products Research Center, KIST Gangneung Institute, Gangneung Techno Valley)
  • Published : 2007.02.22

Abstract

A number of essential oils from Mongolian aromatic plants are claimed to have antimicrobial activities. The essential oil of Dracocephalum foetidum, a popular essential oil used in Mongolian traditional medicine, was examined for its antimicrobial activity. Eight human pathogenic microorganisms including B. subtilis, S. aureus, M. lutens, E. hirae, S. mutans, E. coli, C. albicans, and S. cerevisiae were examined. The essential oil of Dracocephalum foetidum exhibited strong antimicrobial activity against most of the pathogenic bacteria and yeast strains that were tested; by both the agar diffusion method and the minimum inhibitory concentration (MIC) assay ($MIC\;range\;was\;26-2592{\mu}g/ml$). Interestingly, Dracocephalum foetidum even showed antimicrobial activity against methicilin-resistant Staphylococcus aureus (MRSA) strains. We also analyzed the chemical composition of the oil by GC-MS and identified several major components, including n-Mentha-1,8-dien-10-al, limonene, geranial, and neral.

Keywords

References

  1. Adams, R.P. 1991. Cedarwood oil analysis and properties. p. 159- 173 In: Modern Methods of Plant Analysis: Oils and Waxes Ed. H.F.a.J. Linskins, J.F. Springer-Verlag, Berlin. Germany
  2. Adams, R.P. 2001. Identification ofessential oil by gas chromatography/ mass spectroscopy. Allured Publication, Carol Stream, Illinois, USA
  3. Angioni, A., A. Barra, M. Arlorio, J.D. Coisson, M.T. Russo, F.M. Pirisi, M. Satta, and P. Cabras. 2003. Chemical composition, plant genetic differences, and antifungal activity of the essential oil of Helichrysum italicumG. Don ssp. microphyllum (Willd) Nym. J. Agric Food Chem. 51, 1030-1034 https://doi.org/10.1021/jf025940c
  4. Delaquis, P.J., K. Stanich, B. Girard, and G. Mazza. 2002. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Int. J. Food Microbiol. 74, 101-109 https://doi.org/10.1016/S0168-1605(01)00734-6
  5. Dudareva, N., E. Pichersky, and J. Gershenzon 2004. Biochemistry of plant volatiles. Plant Physiol. 135, 1893-902 https://doi.org/10.1104/pp.104.049981
  6. Inouye, S., T. Takizawa, and H. Yamaguchi. 2001. Antibacterial activity of essential oils and their major constituents against respiratory tract pathogens by gaseous contact. J. Antimicrob. Chemother. 47, 565-573 https://doi.org/10.1093/jac/47.5.565
  7. Kalemba, D. and A. Kunicka 2003. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 10, 813-829 https://doi.org/10.2174/0929867033457719
  8. Knobloch, K., H. Weigand, N. Weis, H.M. Schwarm, and H. Vigenschow. 1986. Action of terpenoides on energy metabolism. p. 429-445. In Progress in Essential Oil Research: 16th International Symposium on Essential Oils, De Gruyter, Berlin, Germany
  9. Lambert, R.J., P.N. Skandamis, P.J. Coote, and G.J. Nychas. 2001. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91, 453-462 https://doi.org/10.1046/j.1365-2672.2001.01428.x
  10. Langfield, R.D., F.J. Scarano, M.E. Heitzman, M. Kondo, G.B. Hammond, and C.C. Neto. 2004. Use of a modified microplate bioassay method to investigate antibacterial activity in the Peruvian medicinal plant Peperomia galioides. J. Ethnopharmacol. 94, 279-281 https://doi.org/10.1016/j.jep.2004.06.013
  11. Lindsay, J.A. and M.T. Holden. 2004. Staphylococcus aureus: superbug, super genome? Trends Microbiol. 12, 378-385 https://doi.org/10.1016/j.tim.2004.06.004
  12. Massada, Y. 1976. Analysis of Essential Oil by Gas Chromatography and Spectrometry. Wiley, New York, USA
  13. Naimi, T.S., K.H. LeDell, D.J. Boxrud, A.V. Groom, C.D. Steward, S.K. Johnson, J.M. Besser, C. O'Boyle, R.N. Danila, J.E. Cheek, M.T. Osterholm, K.A. Moore, and K.E. Smith. 2001. Epidemiology and clonality of community-acquired methicillinresistant Staphylococcus aureus in Minnesota, 1996-1998. Clin. Infect. Dis. 33, 990-996
  14. Naimi, T.S., K.H. LeDell, K. Como-Sabetti, S.M. Borchardt, D.J. Boxrud, J. Etienne, S.K. Johnson, F. Vandenesch, S. Fridkin, C. O'Boyle, R.N. Danila, and R. Lynfield. 2003. Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. Jama. 290, 2976-2984 https://doi.org/10.1001/jama.290.22.2976
  15. Nguefack, J., B.B. Budde, and M. Jakobsen. 2004. Five essential oils from aromatic plants of Cameroon: their antibacterial activity and ability to permeabilize the cytoplasmic membrane of Listeria innocua examined by flow cytometry. Lett. Appl. Microbiol. 39, 395-400 https://doi.org/10.1111/j.1472-765X.2004.01587.x
  16. Salzer, U.J. 1977. The analysis of essential oils and extracts (oleoresins) from seasonings-a critical review. CRC Crit. Rev. Food Sci. Nutr. 9, 345-373 https://doi.org/10.1080/10408397709527239
  17. Senatore, F., N.A. Arnold, and F. Piozzi. 2004. Chemical composition of the essential oil of Salvia multicaulis Vahl. var. simplicifolia Boiss. growing wild in Lebanon. J. Chromatogr. A. 1052, 237-240 https://doi.org/10.1016/j.chroma.2004.08.095
  18. Shatar, S. and S. Altantsetseg. 2000. Essential oil composition of some plants cultivated in Mongolian climate. J. Essen. Oil Res. 12, 745-750 https://doi.org/10.1080/10412905.2000.9712206
  19. Sikkema, J., J.A. de Bont, and B. Poolman. 1994. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269, 8022-8028
  20. Sikkema, J., J.A. de Bont, and B. Poolman. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59, 201-222
  21. Vandendool, H. and P.D. Kratz. 1963. A generalization of the retention index system including linear temperature programmed gasliquid partition chromatography. J. Chromatogr. 11, 463-471 https://doi.org/10.1016/S0021-9673(01)80947-X
  22. Walsh, S.E., J.Y. Maillard, A.D. Russell, C.E. Catrenich, D.L. Charbonneau, and R.G. Bartolo. 2003. Activity and mechanisms of action of selected biocidal agents on Gram-positive and -negative bacteria. J. Appl. Microbiol. 94, 240-247 https://doi.org/10.1046/j.1365-2672.2003.01825.x