DOI QR코드

DOI QR Code

Structural and Electrochemical Characterization of LiFePO4 Synthesized by Hydrothermal Method

  • Jeon, Yeon-Su (Department of Electrical Engineering, Chonnam National University) ;
  • Jin, En-Mei (Department of Electrical Engineering, Chonnam National University) ;
  • Jin, Bo (Department of Electrical Engineering, Chonnam National University) ;
  • Jun, Dae-Kyoo (Department of Electrical Engineering, Chonnam National University) ;
  • Han, Zhen-Ji (Department of Electrical Engineering, Chonnam National University) ;
  • Gu, Hal-Bon (Department of Electrical Engineering, Chonnam National University)
  • Published : 2007.02.28

Abstract

Phospho-olivine $LiFePO_4$ cathode materials were prepared by hydrothermal reaction. Carbon black was added to enhance the electrical conductivity of $LiFePO_4$. The structural and morphological performance of $LiFePO_4$ and $LiFePO_4$-C powders were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). $LiFePO_4$/Li and $LiFePO_4$-C/Li cells were characterized electrochemically by cyclic voltammogram (CV), charge/discharge experiments and ac impedance spectroscopy. The results showed that the discharge capacity of $LiFePO_4$/Li cell was 147 mAh/g at the first cycle and 118 mAh/g after 30 cycles, respectively. The discharge capacity of $LiFePO_4$-C/Li cell with 5 wt% carbon black was the largest among $LiFePO_4$-C/Li cells, 133 mAh/g at the first cycle and 128 mAh/g after 30 cycles, respectively. It was demonstrated that cycling performance of $LiFePO_4$-C/Li cell with 5 wt% carbon black was better than that of $LiFePO_4$/Li cell.

Keywords

References

  1. K. Ozawa, 'Lithium-ion rechargeable batteries with LiCo$O_{2}$ and carbon electrodes: the LiCo$O_{2}$/ Csystem', Solid State Ionics, Vol. 69, p. 212, 1994
  2. G. Pistoia, D. Zane, and Y. Zhang, 'Some aspects of Li$Mn_{2}$$O_{4}$ electrochemistry in the 4 Volt range', J. Electrochem. Soc., Vol. 142, p. 2551, 1995
  3. J. N. Resimers, J. R. Dahn, and U. von Sacken, 'Effects of impurities on the electrochemical properties of LiCo$O_{2}$', J. Electrochem, Soc., Vol. 140, p. 2752, 1993
  4. W. Li, J. N. Resimers, and J. R. Dahn, 'In situ X-ray diffr-action and electrochemical studies of $Li_{1-x}$ Ni$O_{2}$', Solid State Ionics, Vol. 67, p. 123, 1993
  5. J. R. Dahn, U. von Sacken, M. W. Juzkow, and H. A1-Janaby, 'Rechargeable LiNi$O_{2}$/carbon cells', J. Electrochem. Soc., Vol. 138, p. 2207, 1991
  6. I. Koetschau, M. N. Richard, J. R. Dahn, J. B. Soupart, and J. C. Rousche, 'Orthorhombic', J. Electrochem. Soc., Vol. 142, p. 2906, 1995
  7. I.-S. Jeong, J.-U. Kim, and H.-B. Gu, 'Electrochemical properties of Li$Mg_{y}$$Mn_{2-y}$$O_{4}$ spinel phases for rechargeable lithium batteries', J. Power Sources, Vol. 102, p. 55, 2001
  8. B. Jin, J.-U. Kim, and H.-B. Gu, 'Electrochemical pro-perties of lithium-sulfur batteries', J. Power Sources, Vol. 117, p. 148, 2003 https://doi.org/10.1016/S0378-7753(03)00113-7
  9. J.-U. Kim, Y-J. Jo, G.-C. Park, and H.-B. Gu, 'Charge/discharge characteristics of LiMn$O_{2}$composite for lithium polymer battery', J. Power Sources, Vol. 119-121, p. 686, 2003
  10. B. Jin, D.-K. Jun, and H.-B. Gu, 'Electrochemical characteristics of LiMn$O_{2}$ for lithium secondary battery', Transactions on Electrical and Electronic Materials, Vol. 7, p. 76, 2006 https://doi.org/10.4313/TEEM.2006.7.2.076
  11. K. Phadhi, K. S. Nanjundaswamy, and J. B. Goodenough, 'Phospho-olivine as positive-electrode materials for rechargeable lithium batteries', J. Electrochem. Soc., Vol. 144, p. 1188, 1997
  12. K. Shiraishi, K. Dokko, and K. Kanamura, 'Formation of impurities on phospho-olivine LiFe$PO_{4}$ during hydrothermal synthesis', J. Power Sources, Vol. 146, p. 555, 2005 https://doi.org/10.1016/j.jpowsour.2005.03.060
  13. S. T. Myung, S. Komaba, N. Hirosaki, H. Yashiro, and N. Kumagai, 'Emulsion drying synthesis of olivine LiFe$PO_{4}$/C composite and its electrochemical properties as lithium intercalation material', Electrochimica Acta, Vol. 49, p. 4213, 2004 https://doi.org/10.1016/j.electacta.2004.04.016
  14. S. Franger, F. L. Cras, C. Bourbon, and H. Rouault, 'Comparison between different LiFe$PO_{4}$ synthesis routes and their influence on its physico-chemical properties', J. Power Sources, Vol. 119-121, p. 252, 2003
  15. J. J. Chen and M. S. Whittingham, 'Hydrothermal synthesis of lithium iron phosphate', Electrochemistry Communications, Vol. 8, p. 855, 2006 https://doi.org/10.1016/j.elecom.2006.03.021
  16. N. J. Yun, H.-W. Ha, K. H. Jeong, H.-Y. Park, and K. Kim, 'Synthesis and electrochemical properties of olivine-type LiFe$PO_{4}$/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor', J. Power Sources, Vol. 160, p. 1361, 2006 https://doi.org/10.1016/j.jpowsour.2006.02.097
  17. H. Huang, S.-C. Yin, and L. F. Nazar, 'Approaching theoretical capacity of LiFe$PO_{4}$ at room temperature at high rates', Electrochemical and Solid State Letters, Vol. 4, No. 10, p. A170, 2001
  18. A. A. Salah, A. Mauger, K. Zaghib, J. B. Goodenough, N. Ravet, M. Gauthier, F. Gendron, and C. M. Julien, 'Reduction $Fe^{3+}$ of impurities in LiFe$PO_{4}$ from pyrolysis of organic precursor used for carbon deposition', J. Electrochem. Soc., Vol. 153, No.9, p. A1692, 2006 https://doi.org/10.1149/1.2213527
  19. H. Liu, L. J. Fu, H. P. Zhang, J. Gao, C. Li, Y. P. Wu, and H.Q. WU, 'Effects of carbon coatings on nanocom-posite electrodes for lithium-ion batteries', Electro-chemical and Solid State Letters, Vol. 9, No. 12, p. A529, 2006 https://doi.org/10.1149/1.2349490
  20. T. Takeuchi, M. Tabuchi, A. Nakashima, T. Nakamura, Y. Miwa, H. Kageyama, and K. Tatsumi, 'Preparation of dense LiFe$PO_{4}$/C composite positive electrodes using spark-plasma-sintering process', J. Power Sources, Vol. 146, p. 575, 2005 https://doi.org/10.1016/j.jpowsour.2005.03.099
  21. S. Y. Chung, J. T. Bloking, and Y. M. Chiang, 'Electronically conductive phospho-olivines as lithium storage electrodes', Nat. Mater., Vol. 1, p. 123, 2002
  22. G. X. Wang, S. Bewlay, J. Yao, J. H. Ahn, S. X. Dou, and H. K. liu, 'Characterization of Li$M_{x}$$Fe_{1-x}$ $PO_{4}$ (M= Mg, Zr, Ti) cathode materials prepared by the sol-gel method', Electrochemical and Solid State Letters, Vol. 7, p. A503, 2004 https://doi.org/10.1149/1.1819867
  23. A. Yamada, S. C. Chung, and K. Hinikuma, 'Optimized LiFe$PO_{4}$ for lithium battery cathodes', J. Electrochem. Soc., Vol. 148, p. A224, 2001

Cited by

  1. Hydrothermal and Solvothermal Process Towards Development of LiMPO4 (M = Fe, Mn) Nanomaterials for Lithium-Ion Batteries vol.2, pp.3, 2012, https://doi.org/10.1002/aenm.201100642
  2. Effect of operating parameters on synthesis of lithium iron phosphate (LiFePO 4 ) particles in near- and super-critical water vol.127, 2017, https://doi.org/10.1016/j.supflu.2017.03.031
  3. Effect of different conductive additives on charge/discharge properties of LiCoPO4/Li batteries vol.12, pp.2, 2007, https://doi.org/10.1007/s10008-007-0367-4
  4. Supercritical fluid methods for synthesizing cathode materials towards lithium ion battery applications vol.4, pp.52, 2014, https://doi.org/10.1039/C4RA01772B
  5. Nonaqueous synthesis of nano-sized LiMnPO4@C as a cathode material for high performance lithium ion batteries vol.194, 2016, https://doi.org/10.1016/j.electacta.2016.02.090