DOI QR코드

DOI QR Code

RECTIFIABILITY PROPERTIES OF VARIFOLDS IN l3

  • Zhao, Peibiao (Department of Applied Mathematics Nanjing University of Science and Technology) ;
  • Yang, Xiaoping (Department of Applied Mathematics Nanjing University of Science and Technology)
  • Published : 2007.02.28

Abstract

We prove the following theorem: Given a Varifold V in $l^{3}_{\infty}$ with the property that 0 < $lim_{r}_{\rightarrow}_{o}\;\frac{{\mu}v(C_{r}(x))}{r^{2}}\;<\;{\infty}\;for\;{\mu}v\;a.e.x\;{\in}$ SptV, then V is rectifiable.

Keywords

References

  1. W. K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417-491 https://doi.org/10.2307/1970868
  2. L. Ambrosio, M. Gobbino, and D. Pallara, Approximation problems for curvature vari-folds, J. Geom. Anal. 8 (1998), no. 1, 1-19 https://doi.org/10.1007/BF02922105
  3. L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), no. 1, 1-80 https://doi.org/10.1007/BF02392711
  4. L. Ambrosio and B. Kirchhei, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), no. 3, 527-555 https://doi.org/10.1007/s002080000122
  5. A. S. Besicovitch, On the fundamental geometrical properties of linearly measurable plane sets of points, Math. Ann. 98 (1928), no. 1, 422-464 https://doi.org/10.1007/BF01451603
  6. A. S. Besicovitc, On the fundamental geometrical properties of linearly measurable plane sets of points (II), Math. Ann. 115 (1938), no. 1, 296-329 https://doi.org/10.1007/BF01448943
  7. G. David and S. Semmes, Singular integrals and rectifiable sets in $R^n$: Beyond Lipschitz graphs. Ast risque 193, Soc. Math. France, 1991
  8. K. J. Falconer, The geometry of fractal sets, Cambridge Tracts in Mathematics, 85. Cambridge University Press, Cambridge, 1986
  9. H. Federer, The $(\varphi,\kappa)$ rectifiable subsets of n-space, Amer. Math. Soc. 62 (1947), 114-192 https://doi.org/10.2307/1990632
  10. H. Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissensch-aften, Band 153 Springer-Verlag New York Inc., New York, 1969
  11. F. H. Lin, Varifold type theory for Sobolev mappings, First International Congress of Chinese Mathematicians (Beijing, 1998), 423-430, AMS/IP Stud. Adv. Math., 20, Amer. Math. Soc., Providence, RI, 2001
  12. F. H. Lin and X. P. Yang, Geometric measure theory|an introduction, Advanced Math-ematics (Beijing/Boston), 1. Science Press, Beijing; International Press, Boston, MA, 2002
  13. A. Lorent, Rectifiability of measures with locally uniform cube density, Proc. London. Math. Soc. 86 (2003), no. 1, 153-249 https://doi.org/10.1112/S0024611502013710
  14. A. Lorent, A Marstrand type theorem for measures with cube density in general dimension, Math. Proc. Camb. Phil. Soc. 137 (2004), no. 3, 657-696 https://doi.org/10.1017/S0305004104007972
  15. J. M. Marstrand, Hausdorff two-dimensional measure in 3-space, Proc. London Math. Soc. (3) 11 (1961), 91-108 https://doi.org/10.1112/plms/s3-11.1.91
  16. P. Mattila, Hausdorffm regular and rectifiable sets in n-space, Trans. Amer. Math. Soc. 205 (1975), 263-274 https://doi.org/10.2307/1997203
  17. P. Mattila, Geometry of sets and measures in Euclidean spaces, Fractals and rectifiability. Cambridge Studies in Advanced Mathematics, 44. Cambridge University Press, Cam-bridge, 1995
  18. E. F. Morse, Density ratios and $(\phi,1)$ rectifiability in n-space, Trans. Amer. Math. Soc. 69 (1950), 324-334 https://doi.org/10.2307/1990362
  19. P. Morters and D. Preiss, Tangent measure distributions of fractal measures, Math. Ann. 312 (1998), no. 1, 53-93 https://doi.org/10.1007/s002080050212
  20. T. D. Pauw, Nearly flat almost monotone measures are big pieces of Lipschitz graphs, J. Geom. Anal. 12 (2002), no. 1, 29-61 https://doi.org/10.1007/BF02930859
  21. D. Preiss, Geometry of measures in $R^n$: distribution, rectifiability, and densities, Ann. of Math. (2) 125 (1987), no. 3, 537-643 https://doi.org/10.2307/1971410
  22. I. Rubinstein and L. Rubinstein, Partial Differential Equations in Classical Mathenatical Physics, Cambridge University Press, 1998
  23. L. Simon, Lectures on geometric measure theory, Proceedings of the Centre for Math-ematical Analysis, Australian National University, 3. Australian National University, Centre for Mathematical Analysis, Canberra, 1983
  24. P. B. Zhao and X. P. Yang, Some remarks on currents in metric spaces, Southeast Asian Bulletin of Mathematics, 29 (2005), no. 5, 1011-1021
  25. P. B. Zhao and X. P. Yang, Geometric Analysis of Tangent Merasures, Chinese Annals of mathematics 26 (2005), no. 2, 151-164
  26. P. B. Zhao and X. P. Yang, Marstrand Theorem for Cube in $R^d$ with respect to Varifolds, in preparation