DOI QR코드

DOI QR Code

A Study on the Numerical Simulation of the Seismic Sea Waves in the East Sea based on the Boussinesq Equation

Boussinesq 방정식을 이용한 동해지진해일 수치실험 연구

  • 김성대 (한국해양연구원 해양자료정보실) ;
  • 정경태 (한국해양연구원 연안개발연구본부) ;
  • 박수영 (한국해양연구원 해양자료정보실)
  • Published : 2007.03.31

Abstract

Most seismic sea waves in the East Sea originate from earthquakes occurring near the Japanese west coast. While the waves propagate in the East Sea, they are deformed by refraction, diffraction and scattering. Though the Boussinesq equation is most applicable for such wave phenomena, it was not used in numerical modelling of seismic sea waves in the East Sea. To examine characteristics of seismic sea waves in the East Sea, numerical models based on the Boussinesq equation are established and used to simulate recent tsunamis. By considering Ursell parameter and Kajiura parameter, it is proved that Boussinesq equation is a proper equation for seismic sea waves in the East Sea. Two models based on the Boussinesq equation and linear wave equation are executed with the same initial conditions and grid size ($1min{\times}1min$), and the results are compared in various respects. The Boussinesq equation model produced better results than the linear model in respect to wave propagation and concentration of wave energy. It is also certified that the Boussinesq equation model can be used for operational purpose if it is optimized. Another Boussinesq equation model whose grid size is $40sec{\times}30sec$ is set up to simulate the 1983 and 1993 tsunamis. As the result of simulation, new propagation charts of 2 seismic sea waves focused on the Korean east coast are proposed. Even though the 1983 and 1993 tsunamis started at different areas, the propagation paths near the Korean east coast are similar and they can be distinguished into 4 paths. Among these, total energy and propagating time of the waves passing over North Korea Plateau(NKP) and South Korea Plateau(SKP) determine wave height at the Korean east coast. In case of the 1993 tsunami, the wave passing over NKP has more energy than the wave over SKP. In case of the 1983 tsunami, the huge energy of the wave passing over SKP brought about great maximum wave heights at Mukho and Imwon. The Boussinesq equation model established in this study is more useful for simulation of seismic sea waves near the Korean east coast than it is the Japanese coast. To improve understanding of seismic sea waves in shallow water, a coastal area model based on the Boussinesq equation is also required.

Keywords

References

  1. 신창웅. 1999. 동해의 일반적인 해황. p. 1-4. In: 동해 남서해역의 중층수 순환에 관한 연구. 이학박사 학위논문, 인하대학교
  2. 오임상, 안희수, 추교승, 고창남. 1993. 한국 근해의 해저지진과 지진해일. 도서출판 한림원. 236 p
  3. 이광수 등. 1997. Boussinesq 모델. p. 54-96. In: 연안방재 구조물의 설계기술 개발(1). 한국해양연구소. BSPE 97608-00-1052-2
  4. 이광수 등. 1999. 확장형 Boussinesq 모델. p. 127-135. In: 연안방재 구조물의 설계기술 개발(1). 한국해양연구소. BSPE 98707-00-1055-2
  5. 이동영 등. 1993. 이상해면모니터링. p. 169-188. In: 국가종합해양관측망 구축 기술 개발(III). 한국해양연구소. BSPN 00184-628-2
  6. 이호준, 김경희. 1999. 동해안에서의 지진해일 재해저감을 위한 연구(I). 행정자치부 국립방재연구소. 207 p
  7. 이호준, 추교승. 1998. 동해안에서의 쯔나미 위험도 평가. 행정자치부 국립방재연구소. 231 p
  8. 쯔나미조사단. 1994. 일본 북해도 남서부 지진에 의한 한국동해안 지진조사. 한국해안.해양공학회지, 6(1), 117-125
  9. 최병호, 우승범, E. Pelinovsky. 1994. 1993년 동해 쓰나미의 산정. 한국해안.해양공학회지, 6(4), 404-412
  10. 최병호, 이호준. 1993. 1983년 동해 쓰나미의 산정. 대한토목학회논문집, 13(3), 207-219
  11. Abbott, M.B. 1979. Contiuous forms of conservation laws. p. 47-55. In: Computational Hydraulics, Elements of the Theory of Free Surface Flows. Pitman Advanced Publishing Program, London
  12. Abbott, M.B., H.M. Petersen, and O. Skovgaard. 1978. On the numerical modelling of short waves in the shallow water. J. Hydraul. Res., 16(3), 173-204 https://doi.org/10.1080/00221687809499616
  13. Aida, I. 1969. Numerical experiments for tsunami propagation - The 1964 Niigata Tsunami and the 1968 Tokachi- Oki Tsunami. Bull. Earthq. Res. Inst., 47, 673-700
  14. Aida, I. 1984. A source model of the tsunami accompanying the 1983 Nihonkai-Chubu Earthquake. Bull. Earthq. Res. Inst., 59, 93-104
  15. Carnahan, B., H.A. Luther, and J.O. Wilkes. 1969. Approximation of the solution of partial differential equations. p. 441-442. In: Applied Numerical Methods. John Wiley & Sons
  16. Dingemans, M.W. 1997. Boussinesq-type models for uneven bottoms. p. 473-688. In: Water Wave Propagation over Uneven Bottoms, Part 2 - Non-Linear Wave Propagation. World Scientific Publishing Co., Singapore
  17. Kajiura, K. 1963. The leading wave of a tsunami. Bull. Earthq. Res. Inst., 41, 535-571
  18. Kato, K. and Y. Tsuji. 1994. Estimation of fault parameters of the 1993 Hokkaido-Nansei-Oki earthquake and tsunami characteristics. Bull. Earthq. Res. Inst., 69, 39-66
  19. Lisitzin, E. 1974. Tsunamis. p. 197-202. In: Sea Level Changes. Elsevier Oceanography Series 8. Elsevier, Amsterdam
  20. Madsen, Per A., R. Murray, and Ole R. Sorensen. 1991. A new form of Boussinesq equations with improved linear dispersion characteristics. Coast. Eng., 15, 371-388 https://doi.org/10.1016/0378-3839(91)90017-B
  21. Manshinha, L. and D.E. Smylie. 1971. The displacement of earthquake fault model. Bull. Seismol. Soc. Am., 61, 1400-1433
  22. Murty, T.S. 1977. Dispersion and initial value problem. p. 1-30. In: Seismic Sea Waves Tsunamis. D. W. Friesen and Sons Ltd., Canada
  23. Nwogu, O. 1993. Alternative form of Boussinesq equation for nearshore wave propagation. J. Waterway, Port, Coast. Ocean Eng., 119(6), 618-638 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  24. Peregrine, D.H. 1967. Long waves on a beach. J. Fluid Mech., 27(4), 815-827 https://doi.org/10.1017/S0022112067002605
  25. Press, W.H., B.P. Flannery, S.A. Teukolsy, and W.T. Vetterling. 1988. LU Decomposition and Its Applications. p. 47-48. In: Numerical Recipes in C, The Art of Scientific Computing. Cambridge Univ. Press
  26. Satake, K. and K. Shimazaki. 1988. Free oscillation of the Japan Sea excited by Earthquakes-II. Modal approach and synthetic tsunamis. Geophys. J., 93, 457-463 https://doi.org/10.1111/j.1365-246X.1988.tb03873.x
  27. Sato, S. 1996. Numerical simulation of 1993 southwest Hokkaido earthquake tsunami around Okushiri Island. J. Waterway, Port, Coast. Ocean Eng., 122(5), 209-215 https://doi.org/10.1061/(ASCE)0733-950X(1996)122:5(209)
  28. Shuto, N. 1990. Numerical simulation of tsunami - Its present and near future. p. 35-39. In: Proc. Int. Tsunami Symp., Novosibrisk
  29. Shuto, N., T. Suzuki, K. Hasegawa, and K. Inagaki. 1986. A study of numerical technique on the tsunami propagation and run-up. Sci. Tsunami Hazards, 4, 111-124
  30. Takahashi, T., N. Shuto, F. Imamura, and H. Matsutomi. 1994. The measured and computed Hokkaido Nansei- Oki earthquake tsunami of 1993. p. 886-900. In: Proc. 24th Conf. Coast. Eng., ASCE, New York
  31. Tetsuya, H., U. Isao, and S. Yasumasa. 1995. Technical Note of the Port and Harbour Research Institute, Ministry of Transport No. 814. PARI, Japan. 22 p
  32. Tsuji, Y. 1986. Comparison of observed and numerically calculated heights of the 1983 Japan Sea tsunami. Sci. Tsunami Hazards, 4, 91-111
  33. Unesco. 1997. Numerical Method of Tsunami Simulation with the Leap-Frog Scheme. IOC Manuals and Guides No. 35. Paris. 106 p