A Study of Influence Factors for Immobilizing Heavy Metals in Contaminated Soil

중금속으로 오염된 토양의 고정화 영향인자에 관한 연구

  • Hwang, An-Na (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Na, Seung-Min (Department of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Khim, Jee-Hyeong (Department of Civil, Environmental and Architectural Engineering, Korea University)
  • 황안나 (고려대학교 건축사회환경공학과) ;
  • 나승민 (고려대학교 건축사회환경공학과) ;
  • 김지형 (고려대학교 건축사회환경공학과)
  • Published : 2007.08.31

Abstract

Soil contamination by heavy metals was environmental concern due to its effect on human. In this study, monopotassium phosphate $(KH_2PO_4)$ used as phosphate source to remediate the contaminated soil with heavy metals and factors such as reaction time, initial concentration and pH of phosphate solution, species of heavy metal (lead, cadmium, zinc) and particle size were controlled. Heavy metals were removed in the order Pb > Zn > Cd and the maximum effectiveness was achieved for Pb. The removal efficiency of lead was from 95% to 100% and occurred rapidly occurred during 10 minutes. Mechanism of lead immobilization is dissolution of phosphate and the forming of a new mineral with phosphate having extremely low solubility.

중금속으로 인한 토양오염은 인간에게 치명적인 영향을 끼치기 때문에 환경적인 관심사가 된다. 이 연구에서 인산2 수소칼륨$(KH_2PO_4)$은 중금속으로 오염된 토양을 복원하기 위한 소스로 사용하였고 영향인자로서 반응시간, 인산염 용액의 초기농도와 pH, 중금속 종류(납, 카드뮴, 아연), 토양입경을 고려하였다. 중금속은 납 > 아연 > 카드뮴 순으로 제거되었고, 납에서 최대효과를 얻을수 있었다. 납의 제거효율은 95%에서 100%였으며, 반응은 10분동안 신속하게 일어났다. 납의 제거율은 95%에서 100%였고, 반응은 10분 동안 신속하게 일어났다. 납고정화 매커니즘은 인산염의 용해와 매우 낮은 용해도를 갖고 있는 새로운 광물질을 형성한다는 것이다.

Keywords

References

  1. 이의상, 장영천, 이상봉, 2004, 중금속 오염토양에 대한 액상 인산염 복원기술의 적용성 평가, 한국폐기물학회지, 21(7), 677-683
  2. Basta, N.T. and MoGowen, S.L., 2004, Evaluation of chemical immobilization treatments fro reducing heavy metal transport in a smelter-contaminated soil, Environ. Pollut., 127(1), 73-82 https://doi.org/10.1016/S0269-7491(03)00250-1
  3. Chen, X., Wright, J.V., Concha, J.L., and Peurrung, L.M., 1997, Effects of pH on heavy metal sorption on mineral apatite, Environ. Sci. Technol., 31(3), 624-631 https://doi.org/10.1021/es950882f
  4. Chena, Y., Shena, Z., and Li, X., 2004, The use of vetiver grass (Vetiveria zizanioides) in the phytoremediation of soils contaminated with heavy metals, Appl. Geochem., 19(10), 1553-1565 https://doi.org/10.1016/j.apgeochem.2004.02.003
  5. Clemente, R., Almela, C., and Bernal, M.P., 2006, A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste, Environ. Pollut., 143(3), 397-406 https://doi.org/10.1016/j.envpol.2005.12.011
  6. Teodoratos, P., Papassiopi, N., and Xenidis, A., 2002, Evaluation of monobasic calcium phosphate for the immobilization of heavy metals in contaminated soils from Lavrion, J. Hazad. Mater., 94(2), 135-146 https://doi.org/10.1016/S0304-3894(02)00061-4
  7. Ma, Q.Y., Logan, T.J., and Traina, S.J., 1994, Effects of aqueous Al, Cd, Fe (II), Ni, and Zn on Pb immobilization by hydroxyapatite, Environ. Sci. Technol., 28(7), 1219-1228 https://doi.org/10.1021/es00056a007
  8. McGowen, S.L., Basta, N.T., and Brown, G.O., 2001, Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil, J. Environ. Qual., 30, 493-500 https://doi.org/10.2134/jeq2001.302493x
  9. Malviya, R. and Chaudhary, R., 2006, Leaching behavior and immobilization of heavy metals in solidified/stabilized products, J. Hazard. Mater. B, 137(1), 207-217 https://doi.org/10.1016/j.jhazmat.2006.01.056
  10. Mulligan, C.N.,Yong, R.N., and Gibbs, B.F., 2001, Heavy metal removal from sediments by biosurfactants, J. Hazard. Mater., 85(1), 111-125 https://doi.org/10.1016/S0304-3894(01)00224-2
  11. Park, C.K., 2000, Hydration and solidification of hazardous wastes containing heavy metals using modified cementitious materials, Cement Concrete Res., 30(3), 429-435 https://doi.org/10.1016/S0008-8846(99)00272-0
  12. Rha, C.Y., Kang, S.K., and Kim, C.E., 2000, Investigation of the stability of hardened slag paste for the stabilization/solidification of wastes containing heavy metal ions, J. Hazard. Mater. B, 73(3), 255-267 https://doi.org/10.1016/S0304-3894(99)00185-5
  13. Shin, M., Barrington, S.F., Marshall, W.D., and Kim, J.W., 2005, Effect of surfactant alkyl chain length on soil cadmium desorption using surfactant/ligand systems, Chemosphere, 58(6), 735-742 https://doi.org/10.1016/j.chemosphere.2004.06.004
  14. Wang, Y. and Chen, T., 2001, Stabilization of an elevated heavy metal contaminated site, J. Hazad. Mater., 88(1), 63-74 https://doi.org/10.1016/S0304-3894(01)00289-8
  15. Wu, L.H., Luoa, Y.M., Xing, X.R., and Christie, P., 2004, EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk, Agr. Ecosist. Environ., 102(3), 307-318 https://doi.org/10.1016/j.agee.2003.09.002