DOI QR코드

DOI QR Code

Isolation and Characteristics of Bacteriocin-producing Bacteria from the Intestine of Duck for Probiotics

오리로부터 박테리오신을 생산하는 프로바이오틱 미생물의 분리 및 특성

  • Shin, M.S. (Korea Bio Science Research Institute of Organic Bio Tech Co. Ltd.) ;
  • Han, S.K. (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University) ;
  • Ji, A.R. (Korea Bio Science Research Institute of Organic Bio Tech Co. Ltd.) ;
  • Ham, M.R. (Korea Bio Science Research Institute of Organic Bio Tech Co. Ltd.) ;
  • Kim, K.S. (Korea Bio Science Research Institute of Organic Bio Tech Co. Ltd.) ;
  • Lee, W.K. (College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungbuk National University)
  • 신명수 ((주)오비티 한국생명과학연구소) ;
  • 한선경 (충북대학교 수의과대학 및 동물의학연구소) ;
  • 지애란 ((주)오비티 한국생명과학연구소) ;
  • 함미랑 ((주)오비티 한국생명과학연구소) ;
  • 김경수 ((주)오비티 한국생명과학연구소) ;
  • 이완규 (충북대학교 수의과대학 및 동물의학연구소)
  • Published : 2007.10.31

Abstract

The aim of this study was to isolate and characterize bacteriocin-producing bacteria from the intestine of duck to use as probiotics for livestock. A total of 416 strains were isolated from the small intestine and cecum of ducks and 13 isolates were finally selected after determinging inhibitory activity against pathogenic indicators by spot-on-lawn method. The selected strains were identified as Lactobacillus salivarius JWS 58, Lactobacillus plantarum JWS 1354, Pediococcus pentosaceus JWS 939, 7 strains of enterococci, and 3 strains of Escherichia coli. Lact. salivarius JWS 58, Ent. faecium JWS 833, and Ped. pentosaceus JWS 939 showed a strong inhibitory activity against Listeria monocytogenes. E. coli JWS 108 inhibited the growth of E. coli and Staphylococcus aureus. Lact. salivarius JWS 58 strain survived almost 50% in pH 2.5 phosphate buffer for 2 hr. Ped. pentosaceus JWS 939 and Lact. plantarum JWS 1354 showed strong amylolytic activity. These results suggest that a combination of bacteriocins or multispecies probiotics of the selected strains has a strong potential of alternative to antibiotics in livestock production.

항생제 대체물질로서 가축용 생균제를 개발하기 위하여, 오리의 소장 및 맹장으로부터 416주의 미생물을 분리하였으며, 항균물질인 박테리오신을 생산하는 13주를 최종적으로 선발하였다. 선발균주들은 Lactobacillus salivarius 1주, Lactobacillus plantarum 1주, Pediococcus pentosaceus 1주, Enterococcus 7주, 그리고 3주의 E. coli로 동정되었으며, 복합생균제를 제조할 목적으로 상기 균주중 5균주에 대한 박테리오신 및 생균제적인 특성를 조사하였다. 유산균인 Lact. salivarius JWS 58, Ent. faecium JWS 833, 그리고 Ped. pentosaceus JWS 939는 식품관련 병원성 균주로 알려진 Listeria mono- cytogenes에 대하여 강한 항균능력을 나타냈으며, 상기 균주의 cell-free supernatant를 단백질 분해효소 처리시 대부분이 병원균 억제활성을 상실하였다. 선발균주인 E. coli JWS 108은 그람음성균주인 E. coli와 Staphylococcus aureus 균주에 대한 생육억제활성을 나타냈다. 또한 Lact. salivarius JWS 58균주와 Ent. faecium JWS 833균주는 각각 Lactobacillus sp. 및 Enterococcus sp. 균주에 대하여 억제활성을 지니고 있었다. Lact. salivarius JWS 58균주는 pH 2.5 완충용액에서 2시간 동안 50% 이상 생존하였으며, pH 2.0 이하에서는 대부분의 선발균주들이 사멸하였다. 그러나 선발균주 모두 0.5% 담즙산 농도까지 아무런 억제현상없이 정상적으로 성장하였다. Ped. pentosaceus JWS 939와 Lact. plantarum JWS 1354 균주는 상대적으로 높은 amylase와 cellulase 효소 활성를 나타냈으며, E. coli JWS 108 균주는 낮은 효소활성을 보였다. Protease 및 lipase 효소 활성은 5균주 모두 유사하게 나타내었다.

Keywords

References

  1. Alam, M. J., Howlider, M. A. R., Pramanik, M. A. H. and Haque, M. A. 2003. Effect of exogenous enzyme in diet on broiler performance. Int. J. Poul. Sci. 2:168-173 https://doi.org/10.3923/ijps.2003.168.173
  2. Anadon, A, Martinez-Larranaga, M. R. and Martinez, M. A. 2006. Probiotics for animal nutrition in the European union. Regulation and safety assessment. Regul. Toxicol. Pharmacol. 45:91-95 https://doi.org/10.1016/j.yrtph.2006.02.004
  3. Delves-Broughton, J. 1990. Nisin and its uses as a food preservative. Food Technol. 44:100-117
  4. Diez-Gonzalez, F. 2007. Applications of bacteriocins in livestock. Curr. Issues Intest. Microbiol. 8:15-24
  5. Dixon, B. 2000. Antibiotics as growth promoters: risks and alternatives. ASM News. 66:264-265
  6. Fuller, R. 1992. History and development of probiotics. In Probiotics. The scientic basis, R. Fuller (Ed.), Chapman and Hall, London, U.K., pp. 1-8
  7. Gilliland, S. E. and Speck, M. L. 1977. Enumeration and identity of lactobacilli in dietary products. J. Food Prot. 40:760-762 https://doi.org/10.4315/0362-028X-40.11.760
  8. Gillor, O., Kirkup, B. C. and Riley, M. A. 2004. Colicins and microcins: the next generation antimicrobials. Adv. Appl. Microbiol. 54:129-146 https://doi.org/10.1016/S0065-2164(04)54005-4
  9. Gough, J. M., Conlan, L. L., Denman, S. E., Krause, D.O., Smith, W. J., Williamson, M. A. and McSweeney, C. S. 2006. Screening of bacteria from the cattle gastrointestinal tract for inhibitory activity against enterohemorrhagic Escherichia coli O157:H7, O111:H-, and O26:H11. J. Food Prot. 69:2843-2850 https://doi.org/10.4315/0362-028X-69.12.2843
  10. Halami, P. M., Chandrashekar, A. and Joseph, R. 1999. Characterization of bacteriocinogenic strains of lactic acid bacteria in fowl and fish intestines and mushroom. Food Biotechnol. 13:121-136 https://doi.org/10.1080/08905439909549966
  11. Hanlin, M. B., Kalchayanand, N., Ray, P. and Ray, B. 1993. Bacteriocins of lactic acid bacteria in combination have a greater antibacterial activity. J. Food Prot. 56:252-255 https://doi.org/10.4315/0362-028X-56.3.252
  12. Holt, J. G., Krieg, N. R., Sneath, P. H., Astaley, J. T. and Williams, S. T. 1994. Bergey's Manual of Determinative Bacteriology. 9th ed. Williams and Wilkins, Baltimore, USA
  13. Jin, L. Z., Ho, Y. W., Abdullah, N. and Jalaudin, S. 1997. Probiotics in poultry: mode of action. World's Poult. Sci. J. 53:351-368 https://doi.org/10.1079/WPS19970028
  14. Jin, L. Z., Ho, Y. W., Abdullah, N. and Jalaudin, S. 1999. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poul. Sci. 79:886-891
  15. Khasin, A, Alchanati, I. and Shoham, Y. 1993. Purification and characterization of a thermostable xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 59:1725-1730
  16. Khattab, A. A. and Abou-Donia, S. A. 1987. The effect of bile salt on the growth of some lactic acid cultures. Egyptian J. Dairy Sci. 15:51-56
  17. Klaenhammer, T. R. 1988. Bacteriocin of lactic acid bacteria. Biochimie. 70:337-349 https://doi.org/10.1016/0300-9084(88)90206-4
  18. Kosin, B. and Rakshit, S. K. 2006. Microbial and processing criteria for production of probiotics: a review. Food Technol. Biotechnol. 44:371-379
  19. Kwon, D. Y., Koo, M., Ryoo, C. R., Kang, C. H., Min, K. H. and Kim, W. J. 2002. Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J. Microbiol. Biotechnol. 12:96-105
  20. Lesuisse, E., Schanck, K. and Colson, C. 1993. Purification and preliminary characterization of extracellular lipase of Bacillus subtilis 168, an extremely basic pH-tolerant enzyme. Eur. J. Biochem. 216:155-160 https://doi.org/10.1111/j.1432-1033.1993.tb18127.x
  21. Mateu, E. and Martin, M. 2001. Why is anti-microbial resistance a veterinary problem as well? J. Vet. Med. 48:569-581 https://doi.org/10.1046/j.1439-0450.2001.00475.x
  22. Mayr, H. A., Hedges, A. J. and Berkeley, R. C. 1972. Methods for studying bacteriocin. In Methods in Microbiology. Norris, J. R. and Ribbons, D. W. (Ed.), Academic Press, New York, pp. 313-342
  23. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 31:426-428 https://doi.org/10.1021/ac60147a030
  24. Mulet-Powell, N., Lactoste-Armynot, A. M., Vinas, M. and Simeon De Buochberg, M. 1998. Interactions between pairs of bacteriocins from lactic acid bacteria. J. Food Prot. 61:1210-1212 https://doi.org/10.4315/0362-028X-61.9.1210
  25. Poeta, P., Costa, D., Rodrigues, J. and Torres, C. 2006. Detection of genes encoding virulence factors and bacteriocins in fecal enterococci of poultry in Portugal. Avian Dis. 50:64-68 https://doi.org/10.1637/7394-061505R.1
  26. Rodriguez, E., Arques, J. L., Rodriguez, R., Nunez, M. and Medina, M. 2003. Reuterin production by lactobacilli isolated from pig faeces and evaluation of probiotic traits. Lett. Appl. Microbiol. 37:259-263 https://doi.org/10.1046/j.1472-765X.2003.01390.x
  27. Ryan, M. P., Meaney, W. J., Ross, R. P. and Hill, C. 1998. Evaluation of lacticin 3147 and a teat seal containing this bacteriocin for inhibition of mastitis pathogens. Appl. Environ. Microbiol. 64:2287-2290
  28. Stern, N. J., Svetoch, E. A., Eruslanov, B. V., Perelygin, V. V., Mitsevich, E. V., Mitsevich, I. P., Pokhilenko, V. D., Levchuk, V. P., Svetoch, O. E. and Seal. B. S. 2006. Isolation of a Lactobacillus salivarius strain and purification of its bacteriocin, which is inhibitory to Campylobacter jejuni in the chicken gastrointestinal system. Antimicrob. Agents Chemother. 50:3111-3116 https://doi.org/10.1128/AAC.00259-06
  29. Timmerman, H. M., Koning, C. J. M., Mulder, L., Rombouts, F. M. and Beynen, A. C. 2004. Monostrain, multistrain and multispecies probiotics - a comparison of functionality and efficacy. Int. J. Food Microbiol. 96:219-233 https://doi.org/10.1016/j.ijfoodmicro.2004.05.012
  30. Tsai, C. -C., Hsih, H. -Y., Chiu, H. -H., Lai, Y. -Y., Liu, J. -H., Yu, B. and Tsen, H. -Y. 2005. Antagonistic activity against Salmonella infection in vitro and in vivo for two Lactobacillus strains from swine and poultry. Int. J. Food Microbiol. 102:185-194 https://doi.org/10.1016/j.ijfoodmicro.2004.12.014
  31. Yanagida, N., Uozumi, T. and Beppu, T. 1986. Specific excretion of Seratia marcescens protease through the outer membrane of E. coli. J. Bacteriol. 166:937-944 https://doi.org/10.1128/jb.166.3.937-944.1986
  32. 김상호. 2002. 가금맹장 유산균의 생균제적 가치 규명. 전북대학교 박사학위논문
  33. 민평홍. 2004. 오리 및 오리고기의 생산, 유통, 소비구조에 대한 연구. 건국대학교 석사학위논문
  34. 박경준, 유연우. 1995. 돼지분변에서 분리한 Lactobacillus sp. KJ-5의 항균 특성. 한국생물공학회지. 10:553-560
  35. 이재연, 황교열, 김근, 성수일, 박영식, 백만정, 김경례. 2002. 한국토종닭 소장에서 분리한 Lactobacillus pentosus K34가 생산하는 항균성 유기산의 특성. 한국미생물 생명공학회지. 30:241-246

Cited by

  1. Immuno-Modulatory Effects of Bacteriocin-Producing Pediococcus pentosaceus JWS 939 in Mice vol.31, pp.5, 2011, https://doi.org/10.5851/kosfa.2011.31.5.719