DOI QR코드

DOI QR Code

LN2 storage test and damage analysis for a Type 3 cryogenic propellant tank

타입 3 극저온 추진제 탱크의 액체질소저장 시험 및 파손 분석

  • 강상국 (한국과학기술원 항공우주공학전공 대학원) ;
  • 김명곤 (한국과학기술원 항공우주공학전공 대학원) ;
  • 박상욱 (한국과학기술원 항공우주공학전공 대학원) ;
  • 공철원 (한국항공우주연구원 우주발사체사업단 구조그룹) ;
  • 김천곤 (한국과학기술원 항공우주공학전공)
  • Published : 2007.07.31

Abstract

Nowadays, researches for replacing material systems for cryotanks by composites have been being performed for the purpose of lightweight launch vehicle. In this paper, a type 3 propellant tank, which is composed of the composite developed for cryogenic use and an aluminum liner, was fabricated and tested considering actual operating environment, that is, cryogenic temperature and pressure. For this aim, liquid nitrogen (LN2) was injected into the fabricated tank and in turn, gaseous nitrogen (GN2) was used for pressurization. During this test procedure, strains and temperatures on the tank surface were measured. The delamination between hoop layer and helical one, was detected during the experiment. Several attempts were followed to investigate the cause analytically and experimentally. Thermo-elastic analysis in consideration of the progressive failure was done to evaluate the failure index. Experimental approach through a LN2 immersion test of composite/aluminum ring specimens suitable for simulating the Type 3 tank structure.

최근에 발사체의 경량화를 위해 추진제 탱크의 재료를 복합재료로 대체하기 위한 연구가 많이 진행되고 있다. 본 연구에서는 극저온용으로 개발된 복합재와 알루미늄 라이너로 구성된 타입 3 추진제 탱크를 제작하고 실제 극저온 상태의 운용환경을 고려한 실험을 수행하였다. 이를 위해 액체 질소를 제작된 타입 3 탱크에 주입하고 기체 질소를 이용하여 가압하였다. 실험수행과정에서 헬리컬 층과 후프 층 사이에서 층간 분리 현상이 관찰되었으며, 이에 대한 원인을 분석하기 위해 해석적 방법과 실험적 방법이 사용되었다. 해석적 방법에서는 점진적 파손 해석을 고려한 열탄성 해석으로부터 파손 지수를 평가하였으며 실험적 방법에서는 타입 3 탱크를 쉽게 모사할 수 있는 복합재/알루미늄 링 시편의 액체질소 담금 시험을 통해 헬리컬 층과 후프 층 사이의 계면을 관찰하였다.

Keywords

References

  1. R. Heydenreich, 'Cryotanks in Future Vehicles', Cryogenics, Vol. 38, pp. 125-130, 1998 https://doi.org/10.1016/S0011-2275(97)00122-7
  2. A. Pasquier, V. Peypoudat, Y. Prel, 'Liquid Hydrogen Composite Tank for Two Stages To Orbit Reusable Launch Vehicle', 23rd International Symposium on Space Technology and Science, 2002
  3. J. He, T. Shimada, Y. Mizutani, Y. Morino and S. Mizutani, 'Improved Study on Unlined Filament-Wound Composite Tank Designed Cryogenic Propellantes', 14th International Conference on Materials (ICCM-14), 2003
  4. 김명곤, 강상국, 김철웅, 김천곤, 공철원, '극저온 환경에서 탄소섬유강화 복합재료의 수지 조성변화에 따른 인장물성 측정', 제 5회 우주발사체기술 심포지움, pp, 318-323, 2004
  5. S, G. Kang, M, G, Kim and C G, Kim, 'Evaluation of Cryogenic Performance of Adhesives Using Composite-Aluminum Double Lap Joints', Composite Structures, Vol. 78, No, 3, 2007, pp, 440-446 https://doi.org/10.1016/j.compstruct.2005.11.005
  6. J, Scholliers and H. V, Brussel, 'Computer-integrated Filament Winding: Computer-integrated Design, Robotic Filament Winding and Robotic Quality Control', Composite Manufacturing, Vol. 5, No, 1, 1994, pp, 15-23 https://doi.org/10.1016/0956-7143(94)90015-9
  7. Y. D. Doh and C. S. Hong, 'Progressive Failure Analysis for Filament Wound Pressure Vessel', Journal of Reinforced Plastics and Composites, Vol. 14, No.12, 1995, pp. 1278-1306 https://doi.org/10.1177/073168449501401203
  8. F. K. Chang, 'A Progressive Damage Model for Laminated Composites Containing Stress Concentrations', Journal of Composite Materials, Vol. 21, 1987, pp. 834-851 https://doi.org/10.1177/002199838702100904
  9. F. P. Incropera and D. P. DeWitt, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, 1996
  10. S. S. Tompkins,'Thermal Expansion of Selected Graphite-reinforced Polymide-, epoxy-, and Glass-matrix Composites',International Journal of Thermophysics, Vol. 8, No.1, 1987, pp. 119-132 https://doi.org/10.1007/BF00503228
  11. S. W. Tsai, and E. M. Wu, 'A General Theory of Strength for Anisotropic Materials', Journal of Composite Materials, Vol. 5, 1971, pp. 58-80 https://doi.org/10.1177/002199837100500106
  12. R. F. Gibson, Principles of Composite Material Mechanics, McGraw-Hill, 1994
  13. J. C. Brewer and P. A. Lagace, 'Quadratic Stress Criterion for Initiation of Delamination', Journal of Composite Materials, Vol.22, 1988, pp. 1141-1155 https://doi.org/10.1177/002199838802201205
  14. D. M. Kim, Free-edge Delamination in Advanced Composite Laminates, Ph. D. Thesis, KAIST, 1991
  15. L. Liu, B. M. Zhang, D. F. Wang and Z. J. WU, 'Effects of Cure Cycles on Void Content and Mechanical Properties of Composite Laminates', Composite Structures, Vol. 73, No.3, 2006, pp. 303-309 https://doi.org/10.1016/j.compstruct.2005.02.001
  16. J. M. Tang, I. W. Lee and G. S. Springer, 'Effects of Cure Pressure on Resin Flow, Voids and Mechanical Properties', Journal of Composite Materials, Vol. 21, 1987, pp. 421-440 https://doi.org/10.1177/002199838702100502
  17. F. Y. C. Boey and S. W. Lye, 'Void Reduction in Autoclave Processing of Thermoset Composites - Part 1: High Pressure Effects on Void Reduction', Composites, Vol. 23 No.4, 1992, pp. 261-265 https://doi.org/10.1016/0010-4361(92)90186-X