DOI QR코드

DOI QR Code

Genetic Diversity of Ralstonia solanacearum Strains Isolated from Pepper and Tomato Plants in Korea

우리나라에 분포하는 고추와 토마토 풋마름병균(Ralstonia solanacearum) 계통들의 유전적 다양성

  • Seo, Sang-Tae (Horticultural Environment Division, National Horticultural Research Institute, RDA) ;
  • Park, Jong-Han (Horticultural Environment Division, National Horticultural Research Institute, RDA) ;
  • Han, Kyoung-Suk (Horticultural Environment Division, National Horticultural Research Institute, RDA) ;
  • Cheong, Seung-Ryong (Horticultural Environment Division, National Horticultural Research Institute, RDA) ;
  • Lee, Seung-Don (Research & Development Bureau, Research Management Division)
  • Published : 2007.04.01

Abstract

A total of 35 strains of Ralstonia solanacearum isolated from wilted pepper and tomato plants in Korea were analyzed for their genetic diversity by bacteriological, pathological and molecular biological approaches. All the strains were identified as R. solanacearum biovar 4 on the basis of physiological and biochemical tests, and species-specific PCR primers. Pathogenicity of the strains was confirmed by inoculating on 4-week-old pepper and tomato seedlings. Using cluster analysis based on repetitive sequence-based polymerase chain reaction (rep-PCR) genomic fingerprints, R. solanacearum strains isolated from pepper and tomato in Korea divided into 6 groups showing a high degree of genetic diversity at 55% similarity level. The genetic diversify of strains was not significantly correlated with their geographic origins and host plants.

풋마름병징을 나타내는 고추와 토마토 식물체로부터 35개의 풋마름병균 계통들을 분리하여 생리.생화학 실험, 병원성 실험, 유전학적 실험을 통해 유전적 다양성을 연구하였다. 생리 생화학 실험과 종특이적 polymerase chain reaction(PCR)을 실시한 결과 풋마름병균 계통들은 모두 Ralstonia solanacerum biovar 4로 동정되었다. 분리균은 고추와 토마토 유묘를 이용해 병원성이 확인되었다. Repetitive sequence-based PCR(rep-PCR) 결과를 토대로 계통도 분석을 한 결과 고추와 토마토 분리균은 6개의 group으로 나뉘었으며, 유전적 다양성은 높게 나타났다. 풋마름병균 계통들의 그룹간에는 지역별, 기주별 특이성은 관찰되지 않았다.

Keywords

References

  1. Cook, D., Barlow, E. and Sequeira, L. 1989. Genetic diversity of Pseudomonas solanacearum: Detection of restriction fragment length polymorphism with DNA probes that specity virulence and the hypersensitive response. Mol. Plant-Microbe Interact. 2: 113-121 https://doi.org/10.1094/MPMI-2-113
  2. Grover, A., Azmi, W., Gadewar, A. V., Pattanayak, D., Naik, P. S., Shekhawat, G. S. and Chakrabarti, S. K. 2006. Genotypic diversity in a localized population of Ralstonia solanacearum as revealed by random amplified polymorphic DNA markers. J. Appl. Microbiol. 101: 798-806 https://doi.org/10.1111/j.1365-2672.2006.02974.x
  3. Hayward, A.C. 1991. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu. Rev. Phytopathol. 29: 65-87 https://doi.org/10.1146/annurev.py.29.090191.000433
  4. He, L.Y., Sequeira, L. and Kelman, A. 1983. Characteristics of strains of Pseudomonas solanacearum from China. Plant Dis. 67: 1357-1361 https://doi.org/10.1094/PD-67-1357
  5. Horita, M. and Tsuchiya, K. 2001. Genetic diversity of Japanese strains of Ralstonia solanacearum. Phytopathology 91: 399-407 https://doi.org/10.1094/PHYTO.2001.91.4.399
  6. Kelman, A. 1954. The relationship of pathogenicity in Pseudomonas solanacearum to colony appearance on a tetrazolium medium. Phytopathology 44: 693-695
  7. 이승돈. 1999. 한국의 주요 식물세균병 발생 및 특성. 서울대학교. 농학박사학위논문
  8. Lee, S. D., Lee, J. H., Kim, Y. K., Heu, S. G. and Ra, D. S. 2005. Bacterial blight of sesame caused by Xanthomonas campestris pv. sesami. Res. Plant Dis. 11: 146-151 https://doi.org/10.5423/RPD.2005.11.2.146
  9. Louws, F. J., Fulbright, D. W., Stephens, C. T. and de Brujin, F. J. 1994. Specific genomic fingerprint of phytopathogenic Xanthomonas and Pseudomonas pathovars and strains generated with repetitive sequences and PCR. Appl. Envrion. Mcirobiol. 60: 2286-2295
  10. Schonfeld, J., Heuer, H., Van Elsas, J. D. and Smalla, K. 2003. Specific and sensitive detection of Ralstonia solanacearum in soil on the basis of PCR amplification of fliC fragments. Appl. Envrion. Mcirobiol. 69: 7248-7256 https://doi.org/10.1128/AEM.69.12.7248-7256.2003
  11. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Plant pathogenic bacteria. 3rd ed. APS Press, Minnesota, USA
  12. Thwaites, R., Mansfield, J., Eden-Green, S. and Seal, S. 1999. RAPD and rep PCR-based fingerprinting of vascular bacterial pathogens of Musa spp. Plant Pathol. 48: 121-128 https://doi.org/10.1046/j.1365-3059.1999.00321.x
  13. William, G. W., Susan, M. B., Date, A. P. and David, J. L. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703 https://doi.org/10.1128/jb.173.2.697-703.1991
  14. Yabuchhi, E., Kosako, Y., Yano, I., Horta, H. and Nishiuchi, Y. 1996. Validation of the publication of new names and new combinations previously effectively published outside the IJSB. Int. J. Syst. Bacteriol. 46: 625-626 https://doi.org/10.1099/00207713-46-2-625
  15. Yun, G. S., Park, S. Y., Kang, H. J., Lee, K. Y. and Cha, J. S. 2004. Contamination level of Ralstonia solanacearum in soil of greenhouses cultivation tomato plants in Chungbuk province and characteristics of the isolates. Res. Plant Dis. 10: 58-62 https://doi.org/10.5423/RPD.2004.10.1.058

Cited by

  1. Evaluation of Phytophthora root rot- and bacterial wilt-resistant inbred lines and their crosses for use as rootstocks in pepper (Capsicum annuum L.) vol.57, pp.6, 2016, https://doi.org/10.1007/s13580-016-0050-8
  2. Physiological, Biochemical and Genetic Characteristics of Ralstonia solanacearum Strains Isolated from Pepper Plants in Korea vol.19, pp.4, 2013, https://doi.org/10.5423/RPD.2013.19.4.265
  3. Development of an Efficient Screening System for Resistance of Tomato Cultivars to Ralstonia solanacearum vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.290
  4. Reduction of Bacterial Wilt Diseases with Eggplant Rootstock EG203-Grafted Tomatoes in the Field Trials vol.19, pp.2, 2013, https://doi.org/10.5423/RPD.2013.19.2.108