DOI QR코드

DOI QR Code

Planar Hall Sensor Used for Microbead Detection and Biochip Application

  • Thanh, N.T. (Materials Science and Engineering and ReCAMM, Chungnam National University) ;
  • Kim, D.Y. (Materials Science and Engineering and ReCAMM, Chungnam National University) ;
  • Kim, C.G. (Materials Science and Engineering and ReCAMM, Chungnam National University)
  • Published : 2007.03.31

Abstract

The Planar Hall effect in a spin valve structure has been applied as a biosensor being capable of detecting $Dynabeads^{(R)}$ M-280. The sensor performance was tested under the application of a DC magnetic field where the output signals were obtained from a nanovoltmeter. The sensor with the pattern size of $50{\times}100{\mu}m^2$ has produced high sensitivity; especially, the real-time profiles by using that sensor revealed significant performance at external applied magnetic field of around 7.0 Oe with the resolution of 0.04 beads per $\mu m^2$. Finally, a successful array including 24 patterns with the single sensor size of $3{\times}3{\mu}m^2$ has shown the uniform and stable signals for single magnetic bead detection. The comparison of this sensor signal with the others has proved feasibility for biosensor application. This, connecting with the advantages of more stable and high signal to noise of PHR sensor's behaviors, can be used to detect the biomolecules and provide a vehicle for detection and study of other molecular interaction.

Keywords

References

  1. M. M. Miller, P. E. Edelstein, C. R. Tamanaha, L. Zhong, S. Bounak, L. J. Whitman, and R. J. Colton, J. Magn. Magn. Mater. 225, 138 (2001) https://doi.org/10.1016/S0304-8853(00)01220-8
  2. D. L. Graham, H. Ferreira, J. Bernado, P. P. Freitas, and J. M. S. Cabral, J. Appl. Phys. 91, 7786 (2002)
  3. D. L. Graham, H. A. Ferreira, P. P. Freitas, and J. M. S. Cabral, Biosens. Bioelectron. 18, 483 (2003)
  4. P. Besse, G. Boero, M. Demierre, V. Pott, and R. Popovic, Appl. Phys. Lett. 80, 4199 (2002)
  5. A. Sandhu, H.Sanbonsugi, I. Shibasaki, M. Abe, and H. Handa, Jpn. J. Appl. Phys. 43, L868 (2004)
  6. L. Ejsing, M. F. Hansen, A. K. Menon, H. A. Ferreira, D. L. Graham, and P. P. Fretas, Appl. Phys. Lett. 84, 4729 (2004) https://doi.org/10.1063/1.1637949
  7. A. Schuhl, F. Nguyen Van Dau, and J. R. Childress, Appl. Phys. Lett. 66, 2751 (1995)
  8. F. Nguyen Van Dau, A. Schuhl, J. R. Childress, and M. Sussiau, Sensors and Actuators A 53, 256 (1996)
  9. M. Johnson, Magnetoelectronics, Elsevier, Amsterdam, 2004
  10. L. Ejsing, M. F. Hansen, A. K. Menon, H. A. Ferreira, D. L. Graham, and P. P. Freitas, J. Magn. Magn. Mater. 293, 677 (2005)
  11. N. T. Thanh, M. G. Chun, N. D. Ha, K. Y. Kim, C. O. Kim, and C. G. Kim, J. Magn. Magn. Mater. 304, e84 (2006) https://doi.org/10.1016/j.jmmm.2006.02.013

Cited by

  1. Manipulation of Magnetic Beads by Magnetic Fields of Narrow Metallic Wires for Use in Biosensors vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2018867
  2. Novel Multibit Magnetic Tagging Techniques for High-Throughput Multiplexed Chemical Analysis vol.45, pp.6, 2009, https://doi.org/10.1109/TMAG.2009.2018868
  3. Multiple and Mass Transfer of Magnetic Particles for Use in Biosensors vol.47, pp.9, 2011, https://doi.org/10.1109/TMAG.2011.2131672
  4. Electrodeposition of Cobalt Nanowires vol.34, pp.3, 2013, https://doi.org/10.5012/bkcs.2013.34.3.927