Bacillus thuringiensis as a Specific, Safe, and Effective Tool for Insect Pest Control

  • Roh, Jong-Yul (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Choi, Jae-Young (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Li, Ming-Sung (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Jin, Byung-Rae (College of Natural Resources and Life Science Dong-A University) ;
  • Je, Yeon-Ho (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University)
  • Published : 2007.04.30

Abstract

Bacillus thuringiensis (Bt) was first described by Berliner [10] when he isolated a Bacillus species from the Mediterranean flour moth, Anagasta kuehniella, and named it after the province Thuringia in Germany where the infected moth was found. Although this was the first description under the name B. thuringiensis, it was not the first isolation. In 1901, a Japanese biologist, Ishiwata Shigetane, discovered a previously undescribed bacterium as the causative agent of a disease afflicting silkworms. Bt was originally considered a risk for silkworm rearing but it has become the heart of microbial insect control. The earliest commercial production began in France in 1938, under the name Sporeine [72]. A resurgence of interest in Bt has been attributed to Edward Steinhaus [105], who obtained a culture in 1942 and attracted attention to the potential of Bt through his subsequent studies. In 1956, T. Angus [3] demonstrated that the crystalline protein inclusions formed in the course of sporulation were responsible for the insecticidal action of Bt. By the early 1980's, Gonzalez et al. [48] revealed that the genes coding for crystal proteins were localized on transmissible plasmids, using a plasmid curing technique, and Schnepf and Whiteley [103] first cloned and characterized the genes coding for crystal proteins that had toxicity to larvae of the tobacco hornworm, from plasmid DNA of Bt subsp. kurstaki HD-1. This first cloning was followed quickly by the cloning of many other cry genes and eventually led to the development of Bt transgenic plants. In the 1980s, several scientists successively demonstrated that plants can be genetically engineered, and finally, Bt cotton reached the market in 1996 [104].

Keywords

References

  1. Adang, M. J., E. Firoozabady, J. Klein, D. DeBoer, V. Sekar, J. D. Kemp, E. Murray, T. A. Rocheleau, K. Rashka, G. Staffeld, C. Stock, D. Sutton, and D. J. Merlo. 1987. Expression of a Bacillus thuringiensis insecticidal crystal protein gene in tobacco plants, pp. 345-353. Molecular Strategies for Crop Protection. Agrigenetics Advanced Science Company, Madison, WI
  2. Andrup, L., G. B. Jensen, A. Wilcks, L. Smidt, L. Hoflack, and J. Mahillon. 2003. The patchwork nature of rolling-circle plasmids: Comparison of six plasmids from two distinct Bacillus thuringiensis serotypes. Plasmid 49: 205-232 https://doi.org/10.1016/S0147-619X(03)00015-5
  3. Angus, T. A. 1956. Association of toxicity with protein-crystalline inclusions of Bacillus sotto Ishiwata, Can. J Microbiol. 2: 122-131 https://doi.org/10.1139/m56-017
  4. Aronson, A. I., D. Wu, and C. Zhang. 1995. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. J. Bacteriol. 177: 4059-4065 https://doi.org/10.1128/jb.177.14.4059-4065.1995
  5. Barloy, F., A. Delecluse, L. Nicolas, and M. M. Lecadet. 1996. Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis $\delta$-endotoxins. J. Bacteriol. 178: 3099-3105 https://doi.org/10.1128/jb.178.11.3099-3105.1996
  6. Barton, K. A., H. R. Whiteley, and N.-S. Yang. 1987. Bacillus thuringiensis $\delta$-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103-1109 https://doi.org/10.1104/pp.85.4.1103
  7. Beard, C. E., C. Ranasinghe, and R. J. Akhurst. 2001. Screening for novel cry genes by hybridization. Lett. Appl. Microbiol. 33: 241-245 https://doi.org/10.1046/j.1472-765x.2001.00982.x
  8. Beegle, C. C. and T. Yamamoto. 1992. History of Bacillus thuringiensis Berliner research and development. Can. Entomol. 124: 587-616 https://doi.org/10.4039/Ent124587-4
  9. Ben-Dov, E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, A. Khamraev, E. Troitskaya, A. Dubitsky, N. Berezina, and Y. Margalith. 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63: 4883-4890
  10. Berliner, E. 1911. Uber de schlaffsucht der Mehlmottenraupe. Zeitschrift fur das Gesamstadt 252: 3160-3162
  11. Bernhard, K., P. Jarrett, M. Meadows, J. Butt, D. J. Ellis, G. M. Roberts, S. Pauli, P. Rodgers, and H. D. Burges. 1997. Natural isolates of Bacillus thuringiensis: Worldwide distribution, characterization, and activity against insect pests. J. Invertebr. Pathol. 70: 59-68 https://doi.org/10.1006/jipa.1997.4669
  12. Berry, C., S. O'Neil, E. Ben-Dov, A. F. Jones, L. Murphy, M. A. Quail, M. T. Holden, D. Harris, A. Zaritsky, and J. Parkhill. 2002. Complete sequence and organization of pBtoxis, the toxin-coding plasmid of Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol. 68: 5082-5095 https://doi.org/10.1128/AEM.68.10.5082-5095.2002
  13. Black, B. C., L. A. Brennan, P. M. Dierks, and I. E. Gard. 1997. Commercialization of baculoviral insecticides, pp. 341-387. In Miller, L. K. (ed.), The Baculoviruses. Plenum Press, New York
  14. Bonning, B. C. and B. D. Hammock. 1996. Development of recombinant baculoviruses for insect control. Annu. Rev. Entomol. 41: 191-210 https://doi.org/10.1146/annurev.en.41.010196.001203
  15. Boonserm, P., P. Davis, D. J. Ellar, and J. Li. 2005. Crystal structure of the mosquito-larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol. 348: 363-382 https://doi.org/10.1016/j.jmb.2005.02.013
  16. Bravo, A. 1997. Phylogenetic relationships of Bacillus thuringiensis $\delta$-endotoxin family proteins and their functional domains. J. Bacteriol. 179: 2793-2801 https://doi.org/10.1128/jb.179.9.2793-2801.1997
  17. Bravo, A., K. Hendrickx, S. Jansens, and M. Peferoen. 1992. Immunocytochemical analysis of specific binding of Bacillus thuringiensis insecticidal crystal proteins to lepidopteran and coleopteran midgut membranes. J. Invertebr. Pathol. 60: 247-253 https://doi.org/10.1016/0022-2011(92)90005-O
  18. Burden, J. P., R. S. Hails, J. D. Windass, M. M. Suner, and J. S. Cory. 2000. Infectivity, speed of kill, and productivity of a baculovirus expressing the itch mite toxin txp-1 in second and fourth instar larvae of Trichoplusia ni. J. Invertebr. Pathol. 75: 226-236 https://doi.org/10.1006/jipa.1999.4921
  19. Carlson, C. R., D. A. Caugant, and A.-B. Kolsto, 1994. Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Appl. Environ. Microbiol. 60: 1719-1725
  20. Carlton, B. C. and J. M. Gonzalez Jr. 1985. Plasmids and $\delta$-endotoxin production in different subspecies of Bacillus thuringiensis, pp. 246-252. In Hoch, J. A. and P. Setlow (eds.), Molecular Biology of Microbial Differentiation. American Society for Microbiology, Washington, D.C
  21. Carozzi, N. B., V. C. Kramer, G. W. Warren, S. Evola, and M. G. Koziel. 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. 57: 3057-3061
  22. Carpenter, J. E. and L. P. Gianessi. 2001. Agricultural biotechnology: Updated benefit estimates. In: National Center for Food and Agricultural Policy. Washington, DC
  23. Chambers, J. A., A. Jelen, M. P. Gilbert, C. S. Jany, T. B. Johnson, and C. Gawron-Burke. 1991. Isolation and characterization of a novel insecticidal crystal protein gene from Bacillus thuringiensis subsp. aizawai. J. Bacteriol. 173: 3966-3976 https://doi.org/10.1128/jb.173.13.3966-3976.1991
  24. Chang, J. H., J. Y. Choi, B. R. Jin, J. Y. Roh, J. A. Olszewski, S. J. Seo, D. R. O'Reilly, and Y. H. Je. 2003. An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin. J. Invertebr. Pathol. 84: 30-37 https://doi.org/10.1016/S0022-2011(03)00121-6
  25. Chao, L., B. Qiyu, S. Fuping, S. Ming, H. Dafang, L. Guiming, and Y. Ziniu. 2007. Complete nucleotide sequence of pBMB67, a 67-kb plasmid from Bacillus thuringiensis strain YBT-1520. Plasmid 57: 44-54 https://doi.org/10.1016/j.plasmid.2006.06.002
  26. Chaufaux, J., M. Marchal, N. Gilois, I. Jehanno, and C. Buisson. 1997. Investigation of natural strains of Bacillus thuringiensis in different biotopes throughout the world. Can. J. Microbiol. 43: 337-343 https://doi.org/10.1139/m97-047
  27. Choi, J. Y., J. Y. Roh, M. S. Li, H. J. Shim, J. N. Kang, S. D. Woo, B. R. Jin, and Y. H. Je. 2004. Cloning of small plasmids from Bacillus thuringiensis subsp. israelensis using plasmid capture system. Int. J. Indust. Entomol. 9: 183-186
  28. Choi, J. Y., J. Y. Roh, J. N. Kang, H. J. Shim, S. D. Woo, B. R. Jin, M. S. Li, and Y. H. Je. 2005. Genomic segments cloning and analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Commun. 332: 487-493 https://doi.org/10.1016/j.bbrc.2005.04.146
  29. Choma, C. T. and H. Kaplan. 1992. Bacillus thuringiensis crystal protein: Effect of chemical modification of the cysteine and lysine residues. J. Invertebr. Pathol. 59: 75-80 https://doi.org/10.1016/0022-2011(92)90114-J
  30. Christou, P., T. Capell, A. Kohli, J. A. Gatehouse, and A. M. Gatehouse. 2006. Recent developments and future prospects in insect pest control in transgenic crops. Trends Plant Sci. 11: 302-308 https://doi.org/10.1016/j.tplants.2006.04.001
  31. Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, and D. H. Dean. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813
  32. Crickmore, N., D. R. Zeigler, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum, A. Bravo, and D. H. Dean 2006. Bacillus thuringiensis toxin nomenclature. http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/
  33. de Barjac, H. 1981. Identification of H-serotypes of Bacillus thuringiensis, pp. 35-43. In Burges, H. D. (ed.), Microbial Control of Pests and Plant Diseases 1970-1980. Academic Press, London
  34. de Barjac, H. and E. Frachon. 1990. Classification of Bacillus thuringiensis strains. Entomophaga 35: 233-240 https://doi.org/10.1007/BF02374798
  35. de Barjac, H. and F. Lemille. 1970. Presence of flagellar antigenic subfactors in serotype 3 of Bacillus thuringiensis. J. Invertebr. Pathol. 15: 139-140 https://doi.org/10.1016/0022-2011(70)90113-8
  36. de Maagd, R. A., A. Bravo, and N. Crickmore. 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17: 193-199 https://doi.org/10.1016/S0168-9525(01)02237-5
  37. Demir, I. and Z. Demirbag. 2006. A productive replication of Hyphantria cunea nucleopolyhedrovirus in Lymantria dispar cell line. J. Microbiol. Biotechnol. 16: 1485-1490
  38. Donovan, W. P., C. Dankocsik, and M. P. Gilbert. 1988. Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 170: 4732-4738 https://doi.org/10.1128/jb.170.10.4732-4738.1988
  39. EPA. 2006. Biopesticide active ingredients and products containing them. http://www.epa.gov/pesticides/biopesticides/product_lists/bppd_products_by_AI.pdf
  40. EPA. 2001. Off. Pestic. Programs, Biopesticides, and Pollut. Prev. Div. Biopesticides Registration Action Document; Revised Risks and Benefits Sections: Bacillus thuringiensis Plant Pesticides. U. S. Environmental Protection Agency, Washington, DC
  41. Feitelson, J. S., J. Payne, and L. Kim. 1992. Bacillus thuringiensis: Insects and beyond. Bio/Technology 10: 271-275 https://doi.org/10.1038/nbt0392-271
  42. Ferre, J. and J. Van Rie. 2002. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 47: 501-533 https://doi.org/10.1146/annurev.ento.47.091201.145234
  43. Galitsky, N., V. Cody, A. Wojtczak, D. Ghosh, J. R. Luft, W. Pangborn, and L. English. 2001. Structure of the insecticidal bacterial $\delta$-endotoxin Cry3Bb1 of Bacillus thuringiensis. Acta Crystallogr. D Biol. Crystallogr. 57: 1101-1109 https://doi.org/10.1107/S0907444901008186
  44. Gazit, E., P. La Rocca, M. S. Sansom, and Y. Shai. 1998. The structure and organization within the membrane of the helices composing the pore-forming domain of Bacillus thuringiensis $\delta$-endotoxin are consistent with an 'umbrella-like' structure of the pore. Proc. Natl. Acad. Sci. USA 95: 12289-12294
  45. Gill, S. S., E. A. Cowles, and V. Francis. 1995. Identification, isolation, and cloning of a Bacillus thuringiensis CryIAc toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J. Biol. Chem. 270: 27277-27282 https://doi.org/10.1074/jbc.270.45.27277
  46. Gill, S. S., E. A. Cowles, and P. V. Pietrantonio. 1992. The mode of action of Bacillus thuringiensis endotoxins. Annu. Rev. Entomol. 37: 615-636 https://doi.org/10.1146/annurev.en.37.010192.003151
  47. Goldberg, L. J. and J. Margalit. 1977. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti, and Culex pipiens. Mosquito News 37: 355-358
  48. Gonzalez, J. M. Jr., B. J. Brown, and B. C. Carlton. 1982. Transfer of Bacillus thuringiensis plasmids coding for $\delta$-endotoxin among strains of B. thuringiensis and B. cereus. Proc. Natl. Acad. Sci. USA 79: 6951-6955
  49. Gonzalez, J. M. Jr. and B. C. Carlton. 1980. Patterns of plasmid DNA in crystalliferous and acrystalliferous strains of Bacillus thuringiensis. Plasmid 3: 92-98 https://doi.org/10.1016/S0147-619X(80)90038-4
  50. Griffitts, J. S., S. M. Haslam, T. Yang, S. F. Garczynski, B. Mulloy, H. Morris, P. S. Cremer, A. Dell, M. J. Adang, and R. V. Aroian. 2005. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307: 922-925 https://doi.org/10.1126/science.1104444
  51. Grochulski, P., L. Masson, S. Borisova, M. Pusztai-Carey, J. L. Schwartz, R. Brousseau, and M. Cygler. 1995. Bacillus thuringiensis CryIA(a) insecticidal toxin: Crystal structure and channel formation. J. Mol. Biol. 254: 447-464 https://doi.org/10.1006/jmbi.1995.0630
  52. Guillet, P. and H. de Barjac. 1979. Toxicite de Bacillus thuringiensis var. israelensis pour les larves de Simulies vectrices de l'Onchocercose. C. R. Acad. Sci. Paris. 289: 549-552
  53. Hofte, H. and H. R. Whiteley. 1989. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev. 53: 242-255
  54. High, S. M., M. B. Cohen, Q. Y. Shu, and I. Altosaar. 2004. Achieving successful deployment of Bt rice. Trends Plant Sci. 9: 286-292 https://doi.org/10.1016/j.tplants.2004.04.002
  55. Hofmann, C., P. Luthy, R. Hutter, and V. Pliska. 1988. Binding of the $\delta$-endotoxin from Bacillus thuringiensis to brush-border membrane vesicles of the cabbage butterfly (Pieris brassicae). Eur. J. Biochem. 173: 85-91 https://doi.org/10.1111/j.1432-1033.1988.tb13970.x
  56. Horsch, R. B. and H. J. Klee. 1986. Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: Role of T-DNA borders in the transfer process. Proc. Natl. Acad. Sci. USA 83: 4428-4432
  57. Huang, J., S. Rozelle, C. Pray, and Q. Wang. 2002. Plant biotechnology in China. Science 295: 674-676 https://doi.org/10.1126/science.1067226
  58. Ibarra, J. E., M. C. del Rincon, S. Orduz, D. Noriega, G. Benintende, R. Monnerat, L. Regis, C. M. de Oliveira, H. Lanz, M. H. Rodriguez, J. Sanchez, G. Pena, and A. Bravo. 2003. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl. Environ. Microbiol. 69: 5269-5274 https://doi.org/10.1128/AEM.69.9.5269-5274.2003
  59. Je, Y. H., B. R. Jin, H. W. Park, J. Y. Roh, J. H. Chang, S. J. Seo, J. A. Olszewski, D. R. O'Reilly, and S. K. Kang. 2003. Baculovirus expression vectors that incorporate the foreign protein into viral occlusion bodies. Biotechniques 34: 81-87
  60. Jensen, G. B., B. M. Hansen, J. Eilenberg, and J. Mahillon. 2003. The hidden lifestyles of Bacillus cereus and relatives. Environ. Microbiol. 5: 631-640 https://doi.org/10.1046/j.1462-2920.2003.00461.x
  61. Juarez-Perez, V. M., M. D. Ferrandis, and R. Frutos. 1997. PCR-based approach for detection of novel Bacillus thuringiensis cry genes. Appl. Environ. Microbiol. 63: 2997-3002
  62. Kalman, S., K. L. Kiehne, J. L. Libs, and T. Yamamoto. 1993. Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae. Appl. Environ. Microbiol. 59: 1131-1137
  63. Kim, H. S., M. S. Li, and J. Y. Roh. 2000. Characterization of crystal proteins of Bacillus thuringiensis NT0423 isolate from Korean sericultural farms. Int. J. Indust. Entomol. 1: 115-122
  64. Kim, H. S., H. W. Park, S. H. Kim, Y. M. Yu, S. J. Seo, and S. K. Kang. 1993. Dual specificity of $\delta$-endotoxins produced by newly isolated Bacillus thuringiensis NT0423. Korean J. Appl. Entomol. 32: 426-432
  65. Kim, J. S., J. Y. Choi, J. H. Chang, H. J. Shim, J. Y. Roh, B. R. Jin, and Y. H. Je. 2005. Characterization of an improved recombinant baculovirus producing polyhedra that contains Bacillus thuringiensis CrylAc crystal protein. J. Microbiol. Biotechnol. 15: 710-715
  66. Knight, J. S., A. H. Broadwell, W. N. Grant, and C. B. Shoemaker. 2004. A strategy for shuffling numerous Bacillus thuringiensis crystal protein domains. J. Econ. Entomol. 97: 1805-1813 https://doi.org/10.1603/0022-0493-97.6.1805
  67. Knight, P. J., N. Crickmore, and D. J. Ellar. 1994. The receptor for Bacillus thuringiensis CryIA(c) $\delta$-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol. Microbiol. 11: 429-436 https://doi.org/10.1111/j.1365-2958.1994.tb00324.x
  68. Krieg, A., A. Huger, G. Langenbruch, and W. Schnetter, 1983. Bacillus thuringiensis var. tenebrionis: A new pathotype effective against larvae of Coleoptera. J. Appl. Entomol. 96: 500-508
  69. Kronstad, J. W., H. E. Schnepf, and H. R. Whiteley. 1983. Diversity of locations for Bacillus thuringiensis crystal protein genes. J. Bacteriol, 154: 419-428
  70. Kuo, W. S. and K. F. Chak. 1996. Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Environ. Microbiol. 62: 1369-1377
  71. Lacey, L. A. and A. H. Undeen. 1986. Microbial control of black flies and mosquitoes. Annu. Rev. Entomol. 31: 265-296 https://doi.org/10.1146/annurev.en.31.010186.001405
  72. Lambert, B. and M. Peferoen. 1992. Insecticidal promise of Bacillus thuringiensis. Facts and mysteries about a successful biopesticide. BioScience 42: 112-122 https://doi.org/10.2307/1311652
  73. Lecadet, M. M., E. Frachon, V. C. Dumanoir, H. Ripouteau, S. Hamon, P. Laurent, and I. Thiery. 1999. Updating the H-antigen classification of Bacillus thuringiensis. J. Appl. Microbiol. 86: 660-672 https://doi.org/10.1046/j.1365-2672.1999.00710.x
  74. Lee, I. H., Y. H. Je, J. H. Chang, J. Y. Roh, H. W. Oh, S. G. Lee, S. C. Shin, and K. S. Boo. 2001. Isolation and characterization of a Bacillus thuringiensis ssp. kurstaki strain toxic to Spodoptera exigua and Culex pipiens. Curr. Microbiol. 43: 284-287 https://doi.org/10.1007/s002840010302
  75. Lee, M., D. Bae, D. Lee, K. Jang, D. Oh, and S. Ha. 2006. Reduction of Bacillus cereus in cooked rice treated with sanitizers and disinfectants. J. Microbiol. Biotechnol. 16: 639-642
  76. Lee, M. K., B. A. Young, and D. H. Dean. 1995. Domain III exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgut receptors. Biochem. Biophys. Res. Commun. 216: 306-312 https://doi.org/10.1006/bbrc.1995.2625
  77. Lereclus, D. and O. Arantes. 1992. spbA locus ensures the segregational stability of pTH1030, a novel type of Gram-positive replicon. Mol. Microbiol. 6: 35-46 https://doi.org/10.1111/j.1365-2958.1992.tb00835.x
  78. Lereclus, D., M. M. Lecadet, J. Ribier, and R. Dedonder. 1982. Molecular relationships among plasmids of Bacillus thuringiensis: Conserved sequences through 11 crystalliferous strains. Mol. Gen. Genet. 186: 391-398 https://doi.org/10.1007/BF00729459
  79. Letowski, J., A. Bravo, R. Brousseau, and L. Masson. 2005. Assessment of cry1 gene contents of Bacillus thuringiensis strains by use of DNA microarrays. Appl. Environ. Microbiol. 71: 5391-5398 https://doi.org/10.1128/AEM.71.9.5391-5398.2005
  80. Lewis, F. B., N. R. Dubois, D. Grimble, W. Metterhouse, and J. Quimby. 1974. Gypsy moth: Efficacy of aerially-applied Bacillus thuringiensis. J. Econ. Entomol. 67: 351-354 https://doi.org/10.1093/jee/67.3.351
  81. Li, J., P. A. Koni, and D. J. Ellar. 1996. Structure of the mosquitocidal $\delta$-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J. Mol. Biol. 257: 129-152 https://doi.org/10.1006/jmbi.1996.0152
  82. Li, J. D., J. Carroll, and D. J. Ellar. 1991. Crystal structure of insecticidal $\delta$-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature 353: 815-821 https://doi.org/10.1038/353815a0
  83. Li, M. S., J. Y. Choi, J. Y. Roh, H. J. Shim, J. N. Kang, Y. Kim, Y. Wang, Z. N. Yu, B. R. Jin, and Y. H. Je. 2007. Identification of molecular characterization of novel cryl-type toxin genes from Bacillus thuringiensis K1 isolated in Korea. J. Microbiol. Biotechnol. (In press.)
  84. Li, M. S., Y. H. Je, I. H. Lee, J. H. Chang, J. Y. Roh, H. S. Kim, H. W. Oh, and K. S. Boo. 2002. Isolation and characterization of a strain of Bacillus thuringiensis ssp. kurstaki containing a new $\delta$-endotoxin gene. Curr. Microbiol. 45: 299-302 https://doi.org/10.1007/s00284-002-3755-0
  85. Liang, Y., S. S. Patel, and D. H. Dean. 1995. Irreversible binding kinetics of Bacillus thuringiensis CryIA delta-endotoxins to gypsy moth brush border membrane vesicles is directly correlated to toxicity. J. Biol. Chem. 270: 24719-24724 https://doi.org/10.1074/jbc.270.42.24719
  86. Lopez-Meza, J. E., J. E. Barboza-Corona, M. C. Del Rincon-Castro, and J. E. Ibarra. 2003. Sequencing and characterization of plasmid pUIBI-l from Bacillus thuringiensis serovar entomocidus LBIT-113. Curr. Microbiol. 47: 395-399
  87. Lorence, A., A. Darszon, C. Diaz, A. Lievano, R. Quintero, and A. Bravo. 1995. $\delta$-Endotoxins induce cation channels in Spodoptera frugiperda brush border membranes in suspension and in planar lipid bilayers. FEBS Lett. 360: 217-222 https://doi.org/10.1016/0014-5793(95)00092-N
  88. Maeda, S. 1995. Further development of recombinant baculovirus insecticides. Curr. Opin. Biotechnol. 6: 313-319 https://doi.org/10.1016/0958-1669(95)80053-0
  89. Marroquin, L. D., D. Elyassnia, J. S. Griffitts, J. S. Feitelson, and R. V. Aroian. 2000. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155: 1693-1699
  90. Martens, J. W., M. Knoester, F. Weijts, S. J. Groffen, Z. Hu, D. Bosch, and J. M. Vlak. 1995. Characterization of baculovirus insecticides expressing tailored Bacillus thuringiensis CryIA(b) crystal proteins. J. Invertebr. Pathol. 66: 249-257 https://doi.org/10.1006/jipa.1995.1097
  91. Martin, P. A. and R. S. Travers. 1989. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55: 2437-2442
  92. Masson, L., M. Erlandson, M. Puzstai-Carey, R. Brousseau, V. Juarez-Perez, and R. Frutos. 1998. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. Appl. Environ. Microbiol. 64: 4782-4788
  93. McDowell, D. G and N. H. Mann. 1991. Characterization and sequence analysis of a small plasmid from Bacillus thuringiensis var. kurstaki strain HD1-DlPEL. Plasmid 25: 113-120 https://doi.org/10.1016/0147-619X(91)90022-O
  94. McGaughey, W. H. 1985. Insect resistance to the biological insecticide Bacillus thuringiensis. Science 229: 193-195 https://doi.org/10.1126/science.229.4709.193
  95. Morse, R. J., T. Yamamoto, and R. M. Stroud. 2001. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9: 409-417 https://doi.org/10.1016/S0969-2126(01)00601-3
  96. Nester, E. W., L. S. Thomashow, M. Metz, and M. Gordon. 2002. 100 Years of Bacillus thuringiensis: A Critical Scientific Assessment. American Academy of Microbiology
  97. Park, H. W., J. Y. Roh, Y. H. Je, B. R. Jin, H. W. Oh, H. Y. Park, and S. K. Kang. 1998. Isolation of a non-insecticidal Bacillus thuringiensis strain belonging to serotype H8a8b. Lett. Appl. Microbiol. 27: 62-66 https://doi.org/10.1046/j.1472-765X.1998.00388.x
  98. Qaim, M. and D. Zilberman. 2003. Yield effects of genetically modified crops in developing countries. Science 299: 900-902 https://doi.org/10.1126/science.1080609
  99. Revina, L. P., I. A. Zalunin, I. V. Krieger, N. M. Tulina, Y. A. Wojciechowska, E. I. Levitin, G. G. Chestukhina, and V. M. Stepanov. 1999. Two types of entomocidal crystals of Bacillus thuringiensis ssp. finitimus have the same set of unique delta-endotoxins. Biochemistry (Mosc.) 64: 1122-1127
  100. Ribeiro, B. M. and N. E. Crook. 1993. Expression of full-length and truncated forms of crystal protein genes from Bacillus thuringiensis subsp. kurstaki in a baculovirus and pathogenicity of the recombinant viruses. J. Invertebr. Pathol. 62: 121-130 https://doi.org/10.1006/jipa.1993.1087
  101. Sacchi, V. F., P. Parenti, G. M. Hanozet, B. Giordana, P. Luthy, and M. G. Wolfersberger. 1986. Bacillus thuringiensis toxin inhibits $K^{+}$-gradient-dependent amino acid transport across the brush border membrane of Pieris brassicae midgut cells. FEBS Lett. 204: 213-218 https://doi.org/10.1016/0014-5793(86)80814-6
  102. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D. R. Zeigler, and D. H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806
  103. Schnepf, H. E. and H. R. Whiteley. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 2893-2897 https://doi.org/10.1073/pnas.78.5.2893
  104. Shelton, A. M., J. Z. Zhao, and R. T. Roush. 2002. Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol. 47: 845-881 https://doi.org/10.1146/annurev.ento.47.091201.145309
  105. Steinhaus, E. A. 1951. Possible use of B. t. berliner as an aid in the control of alfalfa caterpillar. Hilgardia 20: 359-381 https://doi.org/10.3733/hilg.v20n18p359
  106. Stewart, L. M., M. Hirst, M. Lopez Ferber, A. T. Merryweather, P. J. Cayley, and R. D. Possee. 1991. Construction of an improved baculovirus insecticide containing an insect-specific toxin gene. Nature 352: 85-88 https://doi.org/10.1038/352085a0
  107. Strizhov, N., M. Keller, J. Mathur, Z. Koncz-Kalman, D. Bosch, E. Prudovsky, J. Schell, B. Sneh, C. Koncz, and A. Zilberstein. 1996. A synthetic cryIC gene, encoding a Bacillus thuringiensis $\delta$-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proc. Natl. Acad. Sci. USA 93: 15012-15017 https://doi.org/10.1073/pnas.93.26.15012
  108. Tabashnik, B. E. 1994. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol. 39: 47-79 https://doi.org/10.1146/annurev.en.39.010194.000403
  109. Tabashnik, B. E., T. J. Dennehy, and Y. Carriere. 2005. Delayed resistance to transgenic cotton in pink bollworm. Proc. Natl. Acad. Sci. USA 102: 15389-15393
  110. Tanada, Y. and H. K. Kaya. 1993. Insect Pathology. Academic Press, Inc., San Diego
  111. Tu, J., G. Zhang, K. Datta, C. Xu, Y. He, Q. Zhang, G. S. Khush, and S. K. Datta. 2000. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis $\delta$-endotoxin. Nat. Biotechnol. 18: 1101-1104 https://doi.org/10.1038/80310
  112. Vadlamudi, R. K., E. Weber, I. Ji, T. H. Ji, and L. A. Bulla 1) Jr. 1995. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem. 270: 5490-5494 https://doi.org/10.1074/jbc.270.10.5490
  113. Vaeck, M., A. Reynaerts, H. Hofte, S. Jansens, M. De Beukeleer, C. Dean, M. Zabeau, M. Van Montagu, and J. Leemans. 1987. Transgenic plants protected from insect attack. Nature 328: 33-37 https://doi.org/10.1038/328033a0
  114. Valaitis, A. P., M. K. Lee, F. Rajamohan, and D. H. Dean. 1995. Brush border membrane aminopeptidase-N in the midgut of the gypsy moth serves as the receptor for the CryIA(c) $\delta$-endotoxin of Bacillus thuringiensis. Insect Biochem. Mol. Biol. 25: 1143-1151 https://doi.org/10.1016/0965-1748(95)00050-X
  115. Vaughn, T., T. Cavato, G. Brar, T. Coombe, T. DeGooyer, S. Ford, M. Groth, A. Howe, S. Johnson, K. Kolacz, C. Pilcher, J. Purcell, C. Romano, L. English, and J. Pershing. 2005. A method of controlling com rootworm feeding using a Bacillus thuringiensis protein expressed in transgenic maize. Crop Sci. 45: 931-938 https://doi.org/10.2135/cropsci2004.0304
  116. Visser, B., E. Munsterman, A. Stoker, and W. G. Dirkse. 1990. A novel Bacillus thuringiensis gene encoding a Spodoptera exigua-specific crystal protein. J. Bacteriol. 172: 6783-6788 https://doi.org/10.1128/jb.172.12.6783-6788.1990
  117. Whalon, M. E. and B. A. Wingerd. 2003. Bt: Mode of action and use. Arch. Insect Biochem. Physiol. 54: 200-211 https://doi.org/10.1002/arch.10117
  118. Xu, W., C. Zhu, and B. Zhu. 2005. An efficient and stable method for the transformation of heterogeneous genes into Cephalosporium acremonium mediated by Agrobacterium tumefaciens. J. Microbiol. Biotechnol. 15: 683-688
  119. Zhong, C., D. J. Ellar, A. Bishop, C. Johnson, S. Lin, and E. R. Hart. 2000. Characterization of a Bacillus thuringiensis $\delta$-endotoxin which is toxic to insects in three orders. J. Invertebr. Pathol. 76: 131-139 https://doi.org/10.1006/jipa.2000.4962