Comparison of 9th Grade Students' Understanding According to Experiments on the "Law of Definite Proportions" in Science Textbooks

교과서 실험 종류에 따른 중3 학생들의 "일정성분비의 법칙"에 관한 이해도 비교

  • Published : 2007.02.28

Abstract

In this study, students' thoughts were searched according to the types of experiments related to the "law of definite proportions" in 9th grade science textbooks. The most common four types of experiments in textbooks were selected and analyzed for this study. It was found that the experiments needed various preconceptions and complex inferring process by students. But most of the students could not catch the concept understanding desired from the experiments. They just perceived simple observation from their senses. These phenomena were common regardless of types of experiments. These means that the level of preconceptions and inferring process for the interpretation of the experimental data did not match with students' level of thoughts. The goals of the experiments in science textbooks are to increase students' inquiry ability, and to acquire science concepts by themselves from the experiment results. But if the contents of experiments are not suitable to students' understanding level, the educational effects of the performance of these experiments were not positive. Therefore, these experiments need contents revisions for students to acquire the concept related to the "law of definite proportions" by themselves.

이 연구에서는 중학교 9학년 과학 교과서의 실험 중에서 일정성분비의 법칙을 확인하는 실험을 중심으로 다양한 교과서의 실험 종류에 따라 학생들의 이해수준에 어떠한 차이가 발생하는지 알아보았다. 이 연구를 위해 많은 교과서에서 제시된 4종류의 실험을 선정하고 분석하였다. 연구 결과, 실험의 결과를 해석하기 위해서는 다양한 사전 개념들과 복잡한 추론 과정을 필요로 하는 것으로 나타났다. 또한 대부분의 학생들은 실험을 통해 획득하기를 바라는 개념의 이해를 제대로 하지 못하고 단순히 감각을 통한 관찰 수준의 이해에 머물러 있는 것으로 나타났다. 이러한 문제는 실험 종류에 상관없이 공통적이었다. 이는 실험결과를 해석하기 위해 필요한 사전 개념이나 추론 능력의 수준이 학생들의 수준과 맞지 않았기 때문으로 볼 수 있다. 교과서에 제시된 실험들의 궁극적인 목적은, 학습자의 탐구 능력을 신장시키고 실험 결과를 통해 획득하고자 하는 주요한 과학 개념을 스스로 도출해 보도록 하는데 있다고 할 수 있다. 그러나 이 연구에서 분석한 실험들의 경우와 같이, 내용이 학습자의 이해 수준에 적합하지 않을 경우에는 이러한 실험의 도입은 오히려 교육적 측면에서 볼 때 긍정적인 면보다는 부정적인 면이 더 클 것이다. 따라서 일정성분비의 법칙을 학생들이 실험을 통해 스스로 획득하기 위해서는 실험 내용의 재구성이 필요하다고 본다.

Keywords

References

  1. 정선자, 백성혜 (2006) 중학교 3학년 요오드화납 생성반응 실혐의 수업 방식 차이와 학생들의 이해에 관 한 연구. 대한화학회지 50(5), 374-384 https://doi.org/10.5012/jkcs.2006.50.5.374
  2. 최돈형 (1990), 중학생의 과학실험 활동과 과학학습 결과의 관계 분석, 서울대학교 대학원 박사학위 논문
  3. 최병순 (1988). 인지발달과 탐구학습. 과학교육, 15, 54-59
  4. Bryce, T. G. K, & Robertson, I. J. (1985), What can they do? A review of practical assessment in science. Studies in Science education, 12, 1-24 https://doi.org/10.1080/03057268508559921
  5. Bybee, R, & DeBoer, G. (1994). Research on goals for the science curriculum Handbook of research on science teaching and learning (pp. 357-387). New York: lvlacMllan
  6. Friedler, Y, & Tamir, P. (1990). Life in Science laboratory classroom at secondary level. In E. Hegarty Hazal(EdJ, The student laboratory and the curriculum, (pp337-354). London: Rutledge
  7. Hart, C, Mulhall, P., Berry, A, Looughran, J., & Gunstone, R (2000). What is the purpose of this experiment? Or can students learn something from doing experiments? Journal of Research in Science Teaching, 37(7), 655-675 https://doi.org/10.1002/1098-2736(200009)37:7<655::AID-TEA3>3.0.CO;2-E
  8. Hodson, D. (1990). A critical look at practical work in school science. School Science Review, 7, (256), 33-40
  9. Hodson, D. (1996). Practical work in school science: Exploring some directions for change. International Journal of Science Education, 18(7), 755-760 https://doi.org/10.1080/0950069960180702
  10. Hofstein, A, & Lunetta, V. N. (1982). The role of laboratory in science teaching: Neglected aspects of research. Review of Educational Research, 52(2), 201-217 https://doi.org/10.3102/00346543052002201
  11. Hofstein, A, & Lunetta, V. N. (2004). The laboratory in science education: foundations for the twenty-first century. Science Education, 88(1), 28-54 https://doi.org/10.1002/sce.10106
  12. Lazarowitz, R, & Tamir, R (1994). Research on using laboratory instruction in science. In D. Gobel (EdJ, Handbook of Research on Science Teaching and Learning (pp. 94-128). New York: MacMillan
  13. Milar, R, Le Mar'e chal, J. F., & Buty, C (1998). A map of the variety of labwork. Working paper 1. European Project: Labwork in science education (Contract No. ERB-SOE2-CT-95-2001).. The European Commission
  14. Nott, M (1997). Keeping scientists in their place. School Science Review, 78(285), 49-60
  15. Nott, M, & Smith, R (1995). 'Talking your way out of it', 'rigging', and 'conjuring': What science teachers do when practicals go wrong, International Journal of Science Education, 17, 399-410 https://doi.org/10.1080/0950069950170310
  16. Nott, M, & Wellington, J. J. (1996), When the black box springs open: practical work in schools and the nature of science. International Journal of Science Education, 18, 807-824 https://doi.org/10.1080/0950069960180706
  17. Stake, R E., & Easley, J. (1978). Case studies in science education. Urbana-Champaign University of Illinois, Center for instructional and curriculum evaluation
  18. Tobin, K (1986). Secondary science laboratory activities. European Journal of Science Education, 8, 199-211 https://doi.org/10.1080/0140528860080208
  19. Tobin, K. (1990). Research on science laboratory activities: In pursuit of better questions and answers to improve learning. School Science and Mathematics, 90(5), 403-418 https://doi.org/10.1111/j.1949-8594.1990.tb17229.x
  20. Tobin, K., & Gallagher, J. J. (1987). What happens in high school science classrooms? Journal of Curriculum Studies, 19, 549-560 https://doi.org/10.1080/0022027870190606
  21. White, R. T. (1996). The link between the laboratory and teaching. International Journal of Science Education, 18(7),761-774 https://doi.org/10.1080/0950069960180703