Toxicity Monitoring and Assessment of Nanoparticles Using Bacteria

박테리아를 이용한 나노입자의 독성평가 및 탐지

  • Hwang, Ee-Taek (College of Life Sciences and Biotechnology, Korea University) ;
  • Lee, Jung-Il (Nano-Devices Research Center, Korea Institute of Science and Technology) ;
  • Sang, Byoung-In (Center for Environmental Technology Research, Korea Institute of Science and Technology) ;
  • Gu, Man-Bock (College of Life Sciences and Biotechnology, Korea University)
  • 황이택 (고려대학교 생명과학대학) ;
  • 이정일 (한국과학기술연구원 나노소자연구센터) ;
  • 상병인 (한국과학기술연구원 환경기술연구단) ;
  • 구만복 (고려대학교 생명과학대학)
  • Published : 2007.12.31

Abstract

Nanomaterials have been applied to various fields due to their advantageous characteristics such as high surface area, rapid diffusion, high specific surface areas, reactivity in liquid or gas phase, and a size close to biomacromolecules. Up to date, increased manufacturing and frequently use of the materials, however, revoke people's concerns on their hazard impact including toxicity the materials. Many research groups have carried out different protocols to evaluate toxic effects of nanomaterilas on different organisms, and consequently, nanomaterials are known to cytotoxicity. In this paper, we reviewed some of the most reports on toxic effects of several nanoparticles specifically on bacteria. There are numbers of reports focused on antibacterial effect of nanoparticles based on bacterial cell viability. Therefore, the application of each nanomaterial should be concerned with its toxicity and its toxic effect should be evaluated in terms of concentrations and sizes of the nanomaterials used, prior to use of a nanomaterial.

지금까지 우리는 몇 가지 나노입자에 대한 박테리아를 이용한 독성평가 및 탐지 연구 사례를 보았다. 이들은 주로 세포의 생장과 관련하여, 그 평가가 이루어졌고, silver nanoparticles과 같이 그 메커니즘을 밟히기 위해 좀 더 진행이 된 것 또한 있었다. 그러나 아직 그 연구 수준은 매우 미비한 상태이다. 위에서 살펴 본 대부분의 나노입자의 경우 산화적 손상과 밀접한 관련이 있어 보인다. 이것은 나노입자로부터 발생할 이온들에 의해 혹은 나노입자가 박테리아와 작용하여 세포막표면에 직접 달라붙는 현상들에 의해, 일어나는 것이 아닌가 하는 생각을 하게 한다. 그리고 이러한 결과들을 통하여, 나노입자의 독성 경로를 어느 정도 예측할 수 있을 것이다. 확실히 밝혀내지 못한 이러한 독성 경로에 대한 연구가 더 활발히 진행되어야 할 것이다. 나노물질의 많은 장점으로 인하여, 이미 많은 항균성 나노물질이 생산되어 이용되었지만 앞으로 새롭게 합성될 숫자는 우리가 예상할 수 없을 만큼 늘어날 것이라고 생각한다. 그리고 우리는 이들의 무분별한 사용으로 인한 부작용에 다시 한번 놀라게 될 것이고, 그들의 독성에 대해서 걱정할 것이다. 우리는 이들 나노물질에 대해서 단순한 세포 생장 연구를 벗어나, 그 독성 메커니즘을 밝히는 연구 또한 동시에 진행해야 할 것이다. 그것은 동물이나 사람세포의 독성경로 파악에도 유용한 정보를 제공할 수 있고, 나노물질의 이용으로 인한 폐해를 막을 수 있는 중요한 방법이 될 수 있는 것이다.

Keywords

References

  1. Oberdorster, E. (2004), Manufactured nanomaterials (fullerenes, $C_{60}$) induce oxidative stress in the brain of juvenile largemouth bass, Environmental Health Perspectives 112
  2. Huang, S. H. (2006), Gold nanoparticle based immunochromatographic test for identification of Staphylococcus aureus from clinical specimens, Clinica Chimica Acta 373, 139-143 https://doi.org/10.1016/j.cca.2006.05.026
  3. Salman, H. H., C. Gamazo, M. A. Campanero, C. Campanero, and J. M. Irache (2005), Salmonella like bioadhesive nanoparticles, Journal of Controlled Release 106, 1-13 https://doi.org/10.1016/j.jconrel.2005.03.033
  4. Li, X., T. Liu, and Y. Chen (2004), The effects of the nanotopography of biomaterial surfaces on pseudomonas fluorescens cell adhesion, Biochemical Engineering Journal 22, 11-17 https://doi.org/10.1016/j.bej.2004.07.011
  5. Singh, P., D. Prasuhn, R. M. Yeh, G. Destito, C. S. Rae, K. Osborn, M. G. Finn, and M. Manchester (2007), Bio distribution, toxicity and pathology of cowpea mosaic virus nanoparticles in vivo, Journal of Controlled Release 120, 41-50 https://doi.org/10.1016/j.jconrel.2007.04.003
  6. Lin, W., Y. W. Huang, X. D. Zhou, and Y. Ma (2006), In vitro toxicity of silica nanoparticles in human lung cancer cells, Toxicology and Applied Pharmacology 217, 252-259 https://doi.org/10.1016/j.taap.2006.10.004
  7. Gelperina, S. E., A. S. Khalansky, I. N. Skidan, Z. S. Smimova, A. I. Bobruskin, S. E. Severin, B. Turowski, F. E. Zanella, and D. J. Kreuter (2002), Toxicological studies of doxorubicin bound to polysorbate 80 coated poly(buty1cyanoacrylate) nanoparticles in healthy rats and rats with intracranial glioblastoma, Toxicology Letters 126, 131-141 https://doi.org/10.1016/S0378-4274(01)00456-8
  8. Jaakohuhta, S., H. Hanna, M. Tuomola, and T. Lovgren (2007), Sensitive Listeria spp. immunoassay based on europium(III) nanoparticulate labels using time resolved fluorescence, International Journal of Food Microbiology 114, 288-294 https://doi.org/10.1016/j.ijfoodmicro.2006.09.025
  9. Matsunaga, T., T. Suzuki, M. Tanaka, and A. Arakaki (2007), Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano biotechnology, Trends in Biotechnology 25, 182-188 https://doi.org/10.1016/j.tibtech.2007.02.002
  10. Brigger, I., C. Dubernet, and P. Couvreur (2002), Nanoparticles in cancer therapy and diagnosis, Adv. Drug Delivery Rev. 54, 631-651 https://doi.org/10.1016/S0169-409X(02)00044-3
  11. Hermanson, K. D., S. O. Lumsdon, J. P. Williams, E. W. Kaler, and O. D. Velev (2001), ielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions, Science 294, 1082-1086 https://doi.org/10.1126/science.1063821
  12. Tessier, P. M., O. D. Velev, A. T. Kalambur, J. F. Rabolt, A. M. Lenhoff, and E. W. Kaler (2000), Assembly of gold nanostructured films templated by colloidal crystals and use in surface enhanced Raman spectroscopy, J. Am. Chem. Soc. 122, 9554-9555 https://doi.org/10.1021/ja0022831
  13. Wu, X., H. Liu, J. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, E. Ge, F. Peale, and M. P. Bruchez (2003), Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nat. Biotechnol. 21, 41-46 https://doi.org/10.1038/nbt764
  14. Biswas, P. and C. J. Wu (2005), Nanoparticles and the Environment, J. Air Waste Manage. 55, 708-746 https://doi.org/10.1080/10473289.2005.10464656
  15. Colvin, V. L. (2003), The potential environmental impact of engineered nanomaterials, Nat. Biotechnol. 21, 1166-1170 https://doi.org/10.1038/nbt875
  16. Yu, D. G. (2007), Formation of colloidal silver nanoparticles stabilized by Na+ - poly(glutamic acid) - silver nitrate complex via chemical reduction process, Colloids and Surfaces B: Biointerfaces 59, 171-178 https://doi.org/10.1016/j.colsurfb.2007.05.007
  17. Foucaud, L., M. R. Wilson, D. M. Browna, and V. Stone (2007), Measurement of reactive species production by nanoparticles prepared in biologically relevant media, Toxicology Letters 174, 1-9 https://doi.org/10.1016/j.toxlet.2007.08.001
  18. Wick, P., P. Manser, L. K. Limbach, U. Dettlaff-Weglikowskab, F. Krumeich, S. Roth, W. J. Stark, and A. Bruinink (2007), The degree and kind of agglomeration affect carbon nanotube cytotoxicity, Toxicology Letters 168, 121-131 https://doi.org/10.1016/j.toxlet.2006.08.019
  19. Sayesa, C. M., A. M. Gobinb, K. D. Ausmanc, J. Mendeza, J. L. Westb, and V. L. Colvin (2005), Nano $C_{60}$ cytotoxicity is due to lipid peroxidation, Biomaterials 26, 7587-7595 https://doi.org/10.1016/j.biomaterials.2005.05.027
  20. Basarkar, A., D. Devineni, R. Palaniappan, and J. Singh (2007), Preparation, characterization, cytotoxicity and transfection efficiency of poly(DL lactide co glycolide) and poly(DL lactic acid) cationic nanoparticles for controlled delivery of plasmid DNA, International Journal of Pharmaceutics 343, 247-254 https://doi.org/10.1016/j.ijpharm.2007.05.023
  21. Peng, D., J. Zhang, Q. Liu, and E. W. Taylor (2007), Size effect of elemental selenium nanoparticles (Nano Se) at supranutritional levels on selenium accumulation and glutathione S transferase activity, Journal of Inorganic Biochemistry 101, 1457. 1463
  22. Mao, Z., B. Wang, L. Ma, C. Gao, and J. Shen (2007), The influence of polycaprolactone coating on the internalization and cytotoxicity of gold nanoparticles, Nanomedicine: Nanotechnology, Biology, and Medicine 3, 215-223 https://doi.org/10.1016/j.nano.2007.04.001
  23. Sadeghiani, N., L. S. Barbosa, L. P. Silva, R. B. Azevedo, P. C. Moraisb, and Z. G. M. Lacava (2005), Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid, Journal of Magnetism and Magnetic Materials 289, 466-468 https://doi.org/10.1016/j.jmmm.2004.11.131
  24. Pereverzeva, E., I. Treschalin, D. Bodyagin, O. Maksimenko, K. Langer, S. Dreis, B. Asmussend, J. Kreuter, and S. Gelperina (2007), Influence of the formulation on the tolerance profile of nanoparticle bound doxorubicin in healthy rats: Focus on cardio and testicular toxicity, International Journal of Pharmaceutics 337, 346-356 https://doi.org/10.1016/j.ijpharm.2007.01.031
  25. Pulskamp, K., S. Diabar, and H. F. Krug (2007), Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants, Toxicology Letters 168, 58-74 https://doi.org/10.1016/j.toxlet.2006.11.001
  26. Schubert, D., R. Dargusch, J. Raitano, and S. W. Chan (2006), Cerium and yttrium oxide nanoparticles are neuroprotective, Biochemical and Biophysical Research Communications 342, 86-91 https://doi.org/10.1016/j.bbrc.2006.01.129
  27. Oberdorster, E., S. Zhu, T. M. Blickley, G. P. McClellan, and M. L. Haasch (2006), Ecotoxicology of carbon based engineered nanoparticles: Effects of fullerene ($C_{60}$) on aquatic organisms, Carbon 44, 1112-1120 https://doi.org/10.1016/j.carbon.2005.11.008
  28. Zhu, S., E. Oberdorster, and M. L. Haasch (2006), Toxicity of an engineered nanoparticle fullerene, $C_{60}$) in two aquatic species, and fathead minnow, Marine Environmental Research 62, S5-S9 https://doi.org/10.1016/j.marenvres.2006.04.059
  29. Stoimenov, P. K., R. L. Klinger, G. L. Marchin, and K. J. Klabunde (2002), Metal oxide nanoparticles as bactericidal agents, Langmuir 18, 6679-6686 https://doi.org/10.1021/la0202374
  30. Stoimenov, P. K., R. L. Klinger, G. L. Marchin, and K. J. Klabunde (2002), Metal oxide nanoparticles as bactericidal agents, Langmuir 18, 6679-6686 https://doi.org/10.1021/la0202374
  31. Fresta, M., G. Puglisi, G. Giammona, G. Cavallaro, N. Micali, and P. M. Fumeri (1995), Pefloxacine mesilate loaded and ofloxacin loaded polyethylcyanoacrylate nanoparticles-characterization of the colloidal drug carrier formulation, J. Pharm. Sci. 84, 895-902 https://doi.org/10.1002/jps.2600840721
  32. Sun, Y. G., B. Mayers, T. Herricks, and Y. N. Xia (2003), Polyol synthesis of uniform silver nanowires: a plausible growth mechanism and the supporting evidence, Nano Lett. 3, 955-960 https://doi.org/10.1021/nl034312m
  33. Tokumaru, T., Y. Shimizu, and C. L. Fox (1984), Antiviral activities of silver sulfadiazine and ocular infection, Res. Commun. Chem. Pathol. Pharmacol. 8, 151-158
  34. Yamanaka, M., K. Hara, and J. Kudo (2005), Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy filtering transmission electron microscopy and proteomic analysis, Appl. Environ. Microbiol. 71, 7589-7593 https://doi.org/10.1128/AEM.71.11.7589-7593.2005
  35. Cho, K. H., J. E. Park, T. Osaka, and S. G. Park (2005), The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochimica Acta 51, 956-960 https://doi.org/10.1016/j.electacta.2005.04.071
  36. Pal, S., Y. K. Tak, and J. M. Song (2007), Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram Negative Bacterium Escherichia coli, Appl. Environ. Microbiol. 3, 1712-1720
  37. Sondi, I. and B. Salopek-Sondi (2004), Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram negative bacteria, J. Colloid and Interface Science 275, 177-182 https://doi.org/10.1016/j.jcis.2004.02.012
  38. Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramirez, and M. J. Yacaman (2005), The Bactericidal Effect of Silver Nanoparticles, Nanotechnology 16(10), 2346-2353 https://doi.org/10.1088/0957-4484/16/10/059
  39. Lok, C., C. Ho, R. Chen, Q. He, W. Yu, H. Sun, P. K. Tam, J. Chiu, and C. J. Che (2006), Proteomic Analysis of the Mode of Antibacterial Action of Silver Nanoparticles, Proteome Res. 5(4), 916-924 https://doi.org/10.1021/pr0504079
  40. Otwinowski, Z. and W. Minor (1997), Macromolecular crystallography, Part A, vol. 276. Academic Press Inc., San Diego, 307-326
  41. Organisation for Economic Co operation and Development (OECD) (2004), Guideline for the Testing of Chemicals: (Part 202)
  42. Warheit, D. B., R. A. Hoke, C. Finlay, E. M. Donner, K. L. Reed, and C. M. Sayes (2007), Development of a base set of toxicity tests using ultrafine $TiO_2$ particles as a component of nanoparticle risk management, Toxicology Letters 171, 99-110 https://doi.org/10.1016/j.toxlet.2007.04.008
  43. Adams, L. K., D. Y. Lyon, A. McIntosh, and P. J. J. Alvarez (2006), Comparative toxicity of nano scale $TiO_2$, $SiO_2$ and ZnO water suspensions, Water Science & Technology 54, 327-334 https://doi.org/10.2166/wst.2006.891
  44. Matsunaga, T. and M. Okochi (1995), $TiO_2$ mediated photochemical disinfection of Escherichia coli using optical fibres, Environmental Science and Technology 29, 501-505 https://doi.org/10.1021/es00002a028
  45. Maness, P. C., S. Smolinski, D. M. Blake, Z. Huang, E. J. Wolfrum, and W. A. Jacoby (1999), Bactericidal activity of photocatalytic $TiO_2$ reaction: Toward an understanding of its killing mechanism, Applied an Environmental Microbiology 65, 4094-4098
  46. Reddy, K. M., K. Feris, J. Bell, D. G. Wingett, C. Hanley, and A. Punnoosea (2007), Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems, Appl. Physics Letters 90, 213902 https://doi.org/10.1063/1.2742324
  47. Brayner, R., N. Ferrari-Iliou, S. D. Brivois, M. F. Benedetti, and F. Fievet (2006), Toxicological Impact Studies Based on Escherichia coli Bacteria in Ultrafine ZnO Nanoparticles Colloidal Medium, Nano Lett. 6, 866 https://doi.org/10.1021/nl052326h
  48. Williams, D. N., S. H. Ehrman, and T. R. P. Holoman (2006), Evaluation of the microbial growth response to inorganic nanoparticles, Journal of Nanobiotechnology 4, 1-13 https://doi.org/10.1186/1477-3155-4-1
  49. Chen, C. L. and H. S. Weng (2005), Nanosized $CeO_2$ supported metal oxide catalysts for catalytic reduction of $SO_2$ with CO as a reducing agent, Applied Catalysis B: Environmental 55, 115-122 https://doi.org/10.1016/j.apcatb.2004.08.001
  50. Thill, A., O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan, and A. M. Flank (2006), Cytotoxicity of $CeO_2$ Nanoparticles for Escherichia coli Physico Chemical Insight of the Cytotoxicity Mechanism, Environ. Sci. Technol. 40, 6151-6156 https://doi.org/10.1021/es060999b
  51. Yingguang, L., Y. Zhuoru, and C. Jiang (2007), Prepamtion, Chaiactelization and Antibacterial Property of Cerium Substituted Hydmxyapatite Nanopatticles, J. Rare Earths 25, 452-456 https://doi.org/10.1016/S1002-0721(07)60455-4