Optimization of Biodiesel Production from Rapeseed Oil Using Response Surface Methodology

반응표면분석법을 이용한 유채유로부터 바이오디젤 생산의 최적화

  • Jeong, Gwi-Taek (School of Biological Sciences and Technology, Chonnam National University) ;
  • Yang, Hee-Seung (School of Biological Sciences and Technology, Chonnam National University) ;
  • Park, Seok-Hwan (School of Biological Sciences and Technology, Chonnam National University) ;
  • Park, Don-Hee (School of Biological Sciences and Technology, Chonnam National University)
  • 정귀택 (전남대학교 생명과학기술학부) ;
  • 양희승 (전남대학교 생명과학기술학부) ;
  • 박석환 (전남대학교 생명과학기술학부) ;
  • 박돈희 (전남대학교 생명과학기술학부)
  • Published : 2007.08.30

Abstract

Biodiesel (fatty acid methyl esters) have used to as substitutes for petro-diesel by mixed-form with petro-diesel. In several processes of biodiesel production, alkali-catalyst transesterification produced to biodiesel of high contents with short reaction time. In this study, we investigate the optimal condition of alkali-catalyst transesterification of rapeseed oil produced at Jeju island in Korea using response surface methodology. The optimal condition of biodiesel production is reaction temperature 59.7$^{\circ}C$, catalyst amount 1.18%, oil to methanol molar ratio 1:8.75, and reaction time 5.18 min. At that reaction condition, the fatty acid methyl ester contents of product are above 97%. Our results may provide useful information with regard to the development of more economic and efficient biodiesel production system.

바이오디젤 (지방산 메틸에스테르)은 디젤 엔진의 대체에너지로서 현재 페트로디젤과 일정 수준으로 혼합하여 사용되고 있다. 바이오디젤의 생산에는 다양한 방법 및 공정이 개발되어 적용되고 있는데, 이 중 알칼리 촉매를 이용한 전이에스테르화 반응은 짧은 반응시간에도 높은 순도의 바이오디젤을 생산할 수 있다. 본 연구에서는 제주도산 유채유를 대상으로 알칼리 촉매 (KOH)를 사용하여 반응표면 분석법을 적용하여 전이에스테르화 반응의 최적조건을 탐색하였다. 바이오디젤 생산 인자의 최적조건은 반응온도 59.7$^{\circ}C$, 촉매량 1.18%, 유지 대 메탄을 몰비 1:8.75, 그리고 반응시간 15.18분에서 생산물 중 약 97% 이상의 지방산 메틸에스테르 함량을 확보하였다.

Keywords

References

  1. Mittelbach, M. and C. Remschmidt (2004), Biodiesel. The comprehensive handbook, 1st ed., Boersedruck Ges.m.b.H, Austria
  2. Jeong, G. T. and D. H. Park (2006), Batch (one- & two-stage) production of biodiesel fuel from rapeseed oil, Applied Biochemistry and Biotechnology 129-132, 668-679
  3. Jeong, G. T. and Park, D. H. (2006), Pretreatment of feedstock with high free fatty acid, Korean J. Biotechnol. Bioeng. 21, 418-421
  4. Lee, J. S. et. al. (2003), Process development for production of biodiesel from waste fats, Research report, Ministry of Science and Technology/Ministry of Environment
  5. Sea, H. S. and Lee, J. W. (2005), Biodiesel, 2005 Technology information search report, BA523, Korea Institute of Science and Technology Information
  6. Park, D.H. et. al. (2004), Development of biodiesel production technique, Research report, Ministry of Commerce, Industry and Energy
  7. Jeong, G. T., D. H. Kim and D. H. Park (2007), Response surface methodological approach for optimization of free fatty acid removal, Applied Biochemistry and Biotechnology (In press)
  8. Lee, S. J. and Lim, E. Y. (2002), Optimization of biodiesel production from waste frying oil using response surface method, Korean J. Biotechnol. Bioeng. 17(4), 396-402
  9. Jeong, G. T., and D. H. Park (2006), Response surface methodological approach for optimization of enzymatic synthesis of sorbitan methacrylate, Enzyme Microbiology Technology 39, 381-386 https://doi.org/10.1016/j.enzmictec.2005.11.046
  10. Korean standard association (2004), Fat and oil derivatives - Fatty acid methyl esters(FAME) - Determination of ester and linolenic acid methyl ester contents (KS M 2413: 2004)
  11. Jeong, G. T., D. H. Park, C. H. Kwang, W. T. Lee, C. S. Sunwoo, C. H. Yoon, B. C. Choi, H. S. Kim, S. W. Kim, and U. T. Lee (2004), Production of biodiesel fuel by transesterification of rapeseed oil, Applied Biochemistry and Biotechnology 114, 747-758 https://doi.org/10.1385/ABAB:114:1-3:747