Isolation and ars Detoxification of Arsenite-Oxidizing Bacteria from Abandoned Arsenic-Contaminated Mines

  • Chang, Jin-Soo (Arsenic Geoenvironment Laboratory(National Research Laboratory), Department of Environment Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Yoon, In-Ho (Arsenic Geoenvironment Laboratory(National Research Laboratory), Department of Environment Science and Engineering, Gwangju Institute of Science and Technology(GIST)) ;
  • Kim, Kyoung-Woong (Arsenic Geoenvironment Laboratory(National Research Laboratory), Department of Environment Science and Engineering, Gwangju Institute of Science and Technology(GIST))
  • Published : 2007.05.31

Abstract

The ecosystems of certain abandoned mines contain arsenic-resistant bacteria capable of performing detoxification when an ars gene is present in the bacterial genome. The ars gene has already been isolated from Pseudomonas putida and identified as a member of the membrane transport regulatory deoxyribonucleic acid family. The arsenite-oxidizing bacterial strains isolated in the present study were found to grow in the presence of 66.7 mM sodium arsenate($V;\;Na_2HAsO_4{\cdot}7H_2O$), yet experienced inhibited growth when the sodium arsenite($III;\;NaAsO_2$) concentration was higher than 26 mM. Batch experiment results showed that Pseudomonas putida strain OS-5 completely oxidized 1 mM of As(III) to As(V) within 35 h. An arsB gene encoding a membrane transport regulatory protein was observed in arsenite-oxidizing Pseudomonas putida strain OS-5, whereas arsB, arsH, and arrA were detected in strain OS-19, arsD and arsB were isolated from strain RW-18, and arsR, arsD, and arsB were found in E. coli strain OS-80. The leader gene of arsR, -arsD, was observed in a weak acid position. Thus, for bacteria exposed to weak acidity, the ars system may cause changes to the ecosystems of As-contaminated mines. Accordingly, the present results suggest that arsR, arsD, arsAB, arsA, arsB, arsC, arsH, arrA, arrB, aoxA, aoxB, aoxC, aoxD, aroA, and aroB may be useful for arsenite-oxidizing bacteria in abandoned arsenic-contaminated mines.

Keywords

References

  1. Bruhn, D. F., J. Li, S. Silver, F. Roberto, and B. P. Rosen. 1996. The arsenical resistance operon of IncN plasmid R46. FEMS Microbiol. Lett. 139: 149-153 https://doi.org/10.1111/j.1574-6968.1996.tb08195.x
  2. Cai, J., K. Salmon, and M. S. DuBow. 1998. A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology 144: 2705-2713 https://doi.org/10.1099/00221287-144-10-2705
  3. Chen, C. M., T. K. Misra, S. Silver, and B. P. Rosen. 1986. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 261: 15030-15038
  4. Diorio, C., J. Cai, J. Marmor, R. Shinder, and M. S. DuBow. 1995. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in Gram-negative bacteria. J. Bacteriol. 177: 2050-2056 https://doi.org/10.1128/jb.177.8.2050-2056.1995
  5. Gihring, T. M., G. K. Druschel, R. J. McCleskey, R. J. Hamers, and J. F. Banfield. 2001. Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigation. Environ. Sci. Technol. 35: 3857- 3862 https://doi.org/10.1021/es010816f
  6. Gihring, T. M. and J. F. Banfield. 2001. Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiol. Lett. 204: 335-340 https://doi.org/10.1111/j.1574-6968.2001.tb10907.x
  7. Johnson, D. B. 1998. Biodiversity and ecology of acidophilic microorganisms. FEMS Microbiol. Ecol. 27: 307-317 https://doi.org/10.1111/j.1574-6941.1998.tb00547.x
  8. Jung, S. J., K. H. Jang, E. H. Sihn, S. K. Park, and C. H. Park. 2005. Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J. Microbiol. Biotechnol. 15: 716-721
  9. Katsoyiannis, I. A. and A. I. Zouboulis. 2004. Application of biological processes for the removal of arsenic from groundwaters. Water Res. 38: 17-26 https://doi.org/10.1016/j.watres.2003.09.011
  10. Kostal, J., R. Yang, C. H. Wu, A. Mulchandani, and W. Chen. 2004. Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl. Environ. Microbiol. 70: 4582-4587 https://doi.org/10.1128/AEM.70.8.4582-4587.2004
  11. Lee, S. J., S. C. Lee, S. H. Choi, M. K. Chung, H. G. Rhie, and H. S. Lee. 2001. Effect of ArsA, arsenite-specific ATPase, on inhibition of cell division in Escherichia coli. J. Microbiol. Biotechnol. 11: 825-830
  12. Le, X. C., S. Yalcin, and M. Ma. 2000. Speciation of submicrogram per liter levels of arsenic in water: On site species separation integrated with sample collection. Environ. Sci. Technol. 34: 2342-2347 https://doi.org/10.1021/es991203u
  13. Luis, L. M., F. J. Florencio, and J. C. Reyses. 2003. Arsenic sensing and resistance system in the Cyanobacterium synechocystic sp. strain PCC 6803. J. Bacteriol. 185: 5363- 5371 https://doi.org/10.1128/JB.185.18.5363-5371.2003
  14. Macu, R. E., C. R. Jackson, L. M. Botero, T. R. Mcdermott, and W. P. Inskeep. 2004. Bacterial populations associated with the oxidation and reduction of arsenic in an unsaturated soil. Environ. Sci. Technol. 3: 104-111
  15. Malasarn, D., C. W. Saltkov, K. M. Campbell, J. M. Santini, J. G. Hering, and D. K. Newman. 2004. arrA is a reliable marker for As(V) respiration. Science 306: 455 https://doi.org/10.1126/science.1102374
  16. Martin, A. J. and T. F. Pedersen. 2004. Alteration to lake trophic status as a means to control arsenic mobility in a mine-impacted lake. Water Res. 381: 4415-4423
  17. Mummey, D. L., P. D. Stahl, and J. B. Buyer. 2002. Microbial biomarkers as an indicator of ecosystem recovery following surface mine reclamation. Appl. Soil Ecol. 21: 251-259 https://doi.org/10.1016/S0929-1393(02)00090-2
  18. Na, B. K., B. I. Sang, D. W. Park, and D. H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: Bacteria oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228
  19. Oremland, R. S., J. F. Stolz, and J. T. Hollibaugh. 2004. The microbial arsenic cycle in Mono Lake, California. FEMS Microbiol. Ecol. 48: 15-27 https://doi.org/10.1016/j.femsec.2003.12.016
  20. Park, D. G., Y. S. Yun, J. H. Jo, and J. M. Park. 2005. Effects of ionic strength, background electrolytes, heavy metal, and redox active species on the reduction of hexavalent chromium by Ecklonia biomass. J. Microbiol. Biotechnol. 15: 780- 786
  21. Piotrowaska-Seget, Z., M. Cycon, and J. Kozdroj. 2005. Metal-tolerant bacteria occurring in heavily polluted soil and mine spoil. Appl. Soil Ecol. 28: 237-246 https://doi.org/10.1016/j.apsoil.2004.08.001
  22. Rhie, H. G., S. J. Lee, and H. S. Lee. 2004. Characterization of the plasmid-encoded arsenic salts resistance determinant from Klebsiella oxytoca D12. J. Microbiol. Biotechnol. 14: 593-598
  23. Rosen, B. P. 1999. Families of arsenic transporters. Trends Microbiol. 7: 207-212 https://doi.org/10.1016/S0966-842X(99)01494-8
  24. Roose-Amsaleg, C. L., E. Garnier-Sillam, and M. Harry. 2001. Extraction and purification of microbial DNA from soil and sediment sample. Appl. Soil Ecol. 18: 47-60 https://doi.org/10.1016/S0929-1393(01)00149-4
  25. Saltikov, C. W., A. Cifuentes, K. Venkateswaran, and D. K. Newman. 2003. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69: 2800-2809 https://doi.org/10.1128/AEM.69.5.2800-2809.2003
  26. Saltikov, C. W. and D. K. Newman. 2003. Genetic identification of a respiratory arsenate reductase. Proc. Natl. Acad. Sci. USA 100: 10983-10988
  27. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  28. Santini, J. M., L. I. Sly, R. D. Schnagl, and J. M. Macy. 2000. A new chemolithoautotrophic arsenite-oxidizing bacterium isolated from a gold mine: Phylogenetic, physiological, and preliminary biochemical studies. Appl. Environ. Microbiol. 66: 92-97 https://doi.org/10.1128/AEM.66.1.92-97.2000
  29. Santini, J. M. and R. N. Vanden-Hoven. 2004. Molybdenumcontaining arsenite oxidase of the chemolithoautotrophic arsenite oxidizer NT-26. J. Bacteriol. 186: 1614-1619 https://doi.org/10.1128/JB.186.6.1614-1619.2004
  30. Shin, H. J., S. K. Lee, J. J. Chol, S. H. Koh, J. H. Lee, S. J. Kim, and S. T. Kwon. 2005. Cloning, expression, and characterization of family B-type DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculum arsenaticum and its application to PCR. J. Microbiol. Biotechnol. 15: 1359-1367
  31. Silver, S. and D. Keach. 1982. Energy-dependent arsenate efflux: The mechanism of plasmid-mediated resistance. Proc. Natl. Acad. Sci. USA 79: 6114-6118
  32. Silver, S. and L. T. Phung. 1996. Bacterial heavy metal resistance: New surprises. Annu. Rev. Microbiol. 50: 753- 789 https://doi.org/10.1146/annurev.micro.50.1.753
  33. Stainier, R. T., N. J. Palleronia, and M. Duodoroff. 1966. The aerobic Pseudomonas: A taxonomic study. J. Gen. Microbiol. 43: 159-271 https://doi.org/10.1099/00221287-43-2-159
  34. Turpeinen, R., T. Kairesalo, and M. M. Haggblom. 2004. Microbial community structure and activity in arsenicchromium- and copper-contaminated soils. FEMS Microbiol. Ecol. 47: 39-50 https://doi.org/10.1016/S0168-6496(03)00232-0
  35. Ure, A. M. 1995. In Alloway, B. J. (ed.), Heavy Metals in Soils, pp. 55-68. Chapman & Hall, Glasgow
  36. Wang, L., S. Chen, X. Xiao, X. Hung, D. You, X. Zhou, and Z. Deng. 2006. arsRBOCT arsenic resistance system endoded by linear plasmid pHZ227 in Streptomyces sp. strain FR-008. Appl. Environ. Microbiol. 72: 3738-3742 https://doi.org/10.1128/AEM.72.5.3738-3742.2006
  37. Wu, J., L. S. Tisa, and B. P. Rosen. 1992. Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J. Biol. Chem. 267: 12570- 12576
  38. Wu, J. and B. P. Rosen. 1991. The ArsR protein is a transacting regulatory protein. Mol. Microbiol. 5: 1331-1336 https://doi.org/10.1111/j.1365-2958.1991.tb00779.x
  39. Wu, J. and B. P. Rosen. 1993. The arsD gene encodes a second trans-acting regulatory protein of the plasmidencoded arsenical resistance operon. Mol. Microbiol. 8: 615-623 https://doi.org/10.1111/j.1365-2958.1993.tb01605.x
  40. Xu, C., X. Shi, and B. P. Rosen. 1996. The chromosomal arsR gene of Escherichia coli encodes a trans-acting metalloregulatory protein. J. Biol. Chem. 271: 2427-2432 https://doi.org/10.1074/jbc.271.5.2427
  41. Yoon, K. P. 2002. Plasmid-mediated arsenical and antimonial resistance determinants (ars) of Pseudomonas sp. KM20. J. Microbiol. Biotechnol. 12: 31-38