Use of Solar Cell and Nanofiltration Membrane for System of Enzymatic $H_2$ Production Through Light-Sensitized Photoanode

광바이오 수소제조 시스템에서의 쏠라셀 및 나노여과 멤브레인 활용

  • Shim, Eun-Jung (Dept. of Chemistry, Chungnam National University) ;
  • Bae, Sang-Hyun (Dept. of Environ. Engr., Yonsei Univ.) ;
  • Yoon, Jae-Kyung (Energy Conv. Research Dept., Korea Institute of Energy Research) ;
  • Joo, Hyun-Ku (Energy Conv. Research Dept., Korea Institute of Energy Research)
  • 심은정 (충남대학교 화학과) ;
  • 배상현 (연세대학교 환경공학과) ;
  • 윤재경 (한국에너지기술연구원 에너지전환연구부) ;
  • 주현규 (한국에너지기술연구원 에너지전환연구부)
  • Published : 2007.06.15

Abstract

Solar cell and nanofiltration membrane were utilized in a system of enzymatic hydrogen production through light-sensitized photoanode, which resembles photoelectrochemical(PEC) configuration. Solar cell uses no additional light energy to increase energy for electrons to reduce protons and for holes to oxidize water to oxygen, and nanofiltration membrane replaces a salt bridge successfully with increased ion transport capability. With this system configuration, optimized amount of enzyme(10.98 unit), and an anodized tubular $TiO_2$ electrode($5^{\circ}C$/1 hr in 0.5 wt% HF-$650^{\circ}C$/5 hr) hydrogen evolved at a rate of ca. $43\;{\mu}mol/(cm^2{\times}hr)$ in a cathodic compartment and oxygen generated at a rate of ca. $20\;{\mu}mol/(cm^2{\times}hr)$ in an anodic compartment. The stoichiometric evolution of gases indicated that water was splitted in the system.

Keywords

References

  1. 심은정, 배상현, 윤재경, 주현규, '일체형 포토어노를 활용한 메틸렌블루의 분해', 한국수소 및 신에너지학회 논문집, Vol. 18, No. 1, 2007. 3, pp. 40-45
  2. M. Ashokkumar, 'An overvIew on semiconductor particulate systems for photoreduction of hydrogen', Int. J Hydrogen Energy, Vol. 23, No.6, 1998, pp. 427-438 https://doi.org/10.1016/S0360-3199(97)00103-1
  3. M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, 'A review and recent development in photocatalytic water-splitting using $TiO_{2}$ for hydrogen production', Renewable and Sustainable Energy Reviews, Vol. 11, 2007, p. 401 https://doi.org/10.1016/j.rser.2005.01.009
  4. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, 'Photo-electrochemical properties of the $TiO_{2}$-Pt system in aqueous solutions', Int. J Hydrogen Energy, Vol. 27, No.1, 2002, p. 19 https://doi.org/10.1016/S0360-3199(01)00090-8
  5. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, 'Photo-electrochemical hydrogen generation from water usign solar energy. Materials-related aspects', Int. J Hydrogen Energy, Vol. 27, No.2, 2002, p.991 https://doi.org/10.1016/S0360-3199(02)00022-8
  6. D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, 'Titanium oxide nanotube arrays prepared by anodic oxidation', J Mater. Res., Vol. 16, No. 12, 2001, pp. 3331-3334 https://doi.org/10.1557/JMR.2001.0457
  7. O. K. Varghese, D. Gong, M. Paulose, C. A. Grimes, and E. C. Dickey, 'Crystallization and high-temperature structural thermal stability of titanium oxide nanotube arrays', J. Mater. Res., Vol. 18, No.1, 2003, pp. 156-165 https://doi.org/10.1557/JMR.2003.0022
  8. G. K. Mor, O. K. Vargheese, M. Paulose, N. Mukherjee, and C. A. Grimes, 'Fabrication of tapptered, conical-shaped titania nanotubes', J. Mater. Res. Vol. 18, 2003, pp. 2588-2591 https://doi.org/10.1557/JMR.2003.0362
  9. G. K. Mor, K. Shankar, M. Paulose, O. K. Vargheese, and C. A. Grimes, 'Enhanced photocieavage of water using titiania nanotube arrays', Nanoletters Vol. 5, 2005, pp. 191-195 https://doi.org/10.1021/nl048301k
  10. M. Paulose, G. K. Mor, O. K. Vargheese, K. Shankar, and C. A. Grimes, 'Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays', J. Photochem. Photohiol. A: Chem. Vol. 178, 2006, pp. 8-15 https://doi.org/10.1016/j.jphotochem.2005.06.013
  11. K. S. Raja, V. K. Mahajan, and M. Misra, 'Determination of photo conversion efficiency of nanotubular titanium dioxide photoelectrochemical cell for solar hydrogen generation', J of Power Sources, Vol. 159, 2006, pp. 1258-1265 https://doi.org/10.1016/j.jpowsour.2005.12.036