DOI QR코드

DOI QR Code

Behaviour of axially loaded RC columns strengthened by steel angles and strips

  • Adam, J.M. (ICITECH, Departamento de Ingenieria de la Construccion y Proyectos de Ingenieria Civil, Universidad Politecnica de Valencia) ;
  • Ivorra, S. (Departamento de Ingenieria de la Construccion, OO.PP. e Infraestructura Urbana, Universidad de Alicante) ;
  • Gimenez, E. (ICITECH, Departamento de Ingenieria de la Construccion y Proyectos de Ingenieria Civil, Universidad Politecnica de Valencia) ;
  • Moragues, J.J. (ICITECH, Departamento de Ingenieria de la Construccion y Proyectos de Ingenieria Civil, Universidad Politecnica de Valencia) ;
  • Miguel, P. (ICITECH, Departamento de Ingenieria de la Construccion y Proyectos de Ingenieria Civil, Universidad Politecnica de Valencia) ;
  • Miragall, C. (Departamento de Mecanica de los Medios Continuos y Teoria de Estructuras, Universidad Politecnica de Valencia) ;
  • Calderon, P.A. (ICITECH, Departamento de Ingenieria de la Construccion y Proyectos de Ingenieria Civil, Universidad Politecnica de Valencia)
  • Received : 2007.08.08
  • Accepted : 2007.10.22
  • Published : 2007.10.25

Abstract

This paper presents the development of some numerical models based on the results of laboratory tests performed on axially loaded RC columns strengthened with steel angles and strips. These numerical models consider the nonlinearity of the building materials and the effects of the contact interfaces between different materials. The results of the finite element models accurately describe the general behaviour of the strengthened columns. This study allows engineers to assess the relative importance of the mechanisms acting on the strengthened RC columns. Constructive recommendations are also provided in this paper.

Keywords

References

  1. ACHE (2004), Recomendaciones para el proyecto de estructuras de hormigon de alta resistencia. Comision 1, Grupo de trabajo 1/2. Asociacion Cientifico-tecnica del Hormigon Estructural [in Spanish].
  2. Adam, J. M., Ivorra, S., Gimenez, E. and Calderon, P. A. (2005),"Estudio numerico sobre el comportamiento estructural de soportes de hormigon armado reforzados mediante angulares metalicos y presillas, sometidos a compresion simple", fib Simposio"El Hormigon Estructural y el Transcurso del Tiempo", La Plata [in Spanish].
  3. Adam, J. M., Calderon, P. A., Gimenez, E., Hidalgo, C. and Ivorra, S. (2006),"A study of the behavior of the cement mortar interface in reinforced concrete columns strengthened by means of steel angles and strips", Structural Faults and Repair, Engineering Technics Press, Edinburgh.
  4. Adam, J. M., Pallares, F. J., Calderon, P. A. and Paya, I. J. (2007),"A study of the conditions of use of a new safety system for the building industry", Eng. Struct. 29, 1690-1697. https://doi.org/10.1016/j.engstruct.2006.09.018
  5. ANSYS theory reference 9.0, 2004. ANSYS Inc.
  6. Baltay, P. and Gjelsvik, A. (1990),"Coefficient of friction for steel on concrete at high normal stress", J. Mater. Civ. Eng., 2(1), 46-49. https://doi.org/10.1061/(ASCE)0899-1561(1990)2:1(46)
  7. Barbosa, A. F. and Ribeiro, G. O. (1998),"Analysis of reinforced concrete structures using ANSYS nonlinear concrete model", Computational Mechanics: New Trends and Applications, Barcelona.
  8. Calderon, P. A., Gimenez, E., Adam, J. M. and Ivorra, S. (2006),"Full scale testing of RC columns strengthened with steel angles and battens", Structural Faults and Repair, Engineering Technics Press, Edinburgh.
  9. CEB-FIB Model Code 90, 1991. Laussane.
  10. Cirtek, L. (2001a),"RC columns strengthened with bandage - experimental programme and design recommendations", Constr. Build. Mater. 15, 341-349. https://doi.org/10.1016/S0950-0618(01)00015-0
  11. Cirtek, L. (2001b),"Mathematical model of RC banded column behaviour", Constr. Build. Mater., 15, 351-359.
  12. Drucker, D. C. and Prager, W. (1952),"Soil mechanics and plastic analysis or limit design", Quaterly of Applied Mathematics 10, 157-165. https://doi.org/10.1090/qam/48291
  13. Ellobody, E. and Young, B. (2006),"Design and behaviour of concrete-filled cold-formed stainless steel tube columns", Eng. Struct., 28, 716-728. https://doi.org/10.1016/j.engstruct.2005.09.023
  14. Ellobody, E., Young, B. and Lam, D. (2006),"Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62, 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
  15. ENV 1992-1-1 (Eurocode No. 2), 1991. Design of concrete structures. Part 1: General rules and rules for buildings.
  16. ENV 1993-1-1 (Eurocode No. 3), 1993. Design of steel structures. Part 1: General rules and rules for Buildings.
  17. Erduran, E. and Yakut, A. (2004),"Drift based damage functions for reinforced concrete columns", Comput. Struct. 82, 121-130. https://doi.org/10.1016/j.compstruc.2003.10.003
  18. Gimenez, E., Calderon, P. and Serna, P. (2004),"Contribution to the study of the strengthening of reinforced concrete column using steel angles and steel battens", 5th International Phd Symposium in Civil Engineering, Delft.
  19. Gimenez, E., Adam, J. M., Calderon, P. A. and Ivorra, S. (2006),"Numerical and experimental study of the strengthening of reinforced concrete columns using steel angles and strips", Proceedings of The Tenth East Asia_pacific Conference on Structural Engineering & Construction (EASEC-10), Bangkok.
  20. Gupta, P. K., Sarda, S. M. and Kumar, M. S. (2007),"Experimental and computational study of concrete filled steel tubular columns under axial loads", J. Constr. Steel Res., 63, 182-193. https://doi.org/10.1016/j.jcsr.2006.04.004
  21. Hu, H. T., Huang, C. S. and Chen, Z. L. (2005),"Finite element analysis of CFT columns subjected to an axial compressive force and bending moment in combination", J. Constr. Steel Res., 61, 1692-1712. https://doi.org/10.1016/j.jcsr.2005.05.002
  22. Johansson, M. and Akesson, M. (2001),"Finite element study of concrete-filled steel tubes using a new confinement-sensitive concrete compression model", Nordic Concrete Research 27(2), 43-62.
  23. Lu, F. W., Li, S. P., Li, D. W. and Sun, G. (2006),"Flexural behaviour of concrete filled non-uni-thickness walled rectangular steel tube", J. Constr. Steel Res., doi:10.1016/j.jcsr2006.09.006.
  24. Ministerio de Fomento, 1998. Instruccion de hormigon estructural. EHE [in Spanish].
  25. Mirmirian, A., Zagers, K. and Yuan, W. (2000),"Nonlinear finite element modelling of concrete confined by fiber composites", Finite Elem. Anal. Des. 35(1), 79-96. https://doi.org/10.1016/S0168-874X(99)00056-6
  26. Miyauchi, K., Inoue, S., Kuroda, T. and Kobayashi, A. (1999),"Strengthening effects of concrete columns with carbon fiber sheet", Transactions of the Japan Concrete Institute 21, 143-150.
  27. Ramirez, J. L. and Barcena, J. M. (1975), Eficacia resistente de pilares de hormigon armado de baja calidad reforzados por dos procedimientos diferentes. Informes de la Construccion 272, 89-98 [in Spanish].
  28. Ramirez, J. L., Barcena, J. M. and Feijoo, J. M. (1977),"Comparacion resistente de cuatro metodos de refuerzo de pilares de hormigon armado", Informes de la construccion 290, 57-68 [in Spanish].
  29. Ramirez, J. L. (1996),"Ten concrete column repair methods", Constr. Build. Mater., 10(3), 195-202. https://doi.org/10.1016/0950-0618(95)00087-9
  30. Regalado, F. (1999), Los pilares. Criterios para su proyecto calculo y reparacion. Alicante: CYPE Ingenieros [in Spanish].
  31. Richard, F. E., Brantzaeg, A. and Brown, R. L. (1928),"A study of de failure of concrete under combined compressive stresses", Bulletin 185. Engineering Experiment Station, University of Illinois, Urbana, IL.
  32. Rochette, P. and Labossiere, P. A. (1996),"A plasticity approach for concrete columns confined with composite materials", Proceedings Advanced Composite Materials in Bridges and Structures, CSCE.
  33. Tamai, S., Sato, T. and Okamoto, M. (2000),"Hysteresis model of steel jacketed RC columns for railway viaducts", Proceedings of the 16th Congress of IABSE, Lucerne.
  34. Wu, Y. F., Liu, T. and Oehlers, D. J. (2006),"Fundamental principles that govern retrofitting of reinforced concrete columns by steel and FRP jacketing", Adv. Struct. Eng., 9(4), 507-533. https://doi.org/10.1260/136943306778812769

Cited by

  1. Column–joint assembly in RC columns strengthened by steel caging vol.161, pp.6, 2008, https://doi.org/10.1680/stbu.2008.161.6.337
  2. Axial compression performance of steel box columns with different strengthening schemes vol.17, pp.2, 2017, https://doi.org/10.1007/s13296-017-6001-0
  3. Bearing capacity of steel-caged RC columns under combined bending and axial loads: Estimation based on Artificial Neural Networks vol.56, 2013, https://doi.org/10.1016/j.engstruct.2013.06.039
  4. RC Columns Strengthened with Steel Angles and Battens: Experimental Results and Design Procedure vol.18, pp.1, 2013, https://doi.org/10.1061/(ASCE)SC.1943-5576.0000125
  5. A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates vol.1, pp.2, 2013, https://doi.org/10.12989/acc.2013.01.2.163
  6. Strength and ductility of R.C. columns strengthened with steel angles and battens vol.35, 2012, https://doi.org/10.1016/j.conbuildmat.2012.04.090
  7. Simplified analytical model for moment–axial force domain in the presence of shear in R.C. members externally strengthened with steel cages vol.49, pp.8, 2016, https://doi.org/10.1617/s11527-015-0710-7
  8. Frictional Effects in Structural Behavior of No-End-Connected Steel-Jacketed RC Columns: Experimental Results and New Approaches to Model Numerical and Analytical Response vol.143, pp.8, 2017, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001796
  9. Axial strengthening of preloaded rectangular concrete columns by precambered steel plates vol.38, 2012, https://doi.org/10.1016/j.engstruct.2012.01.003
  10. Flexural response of external R.C. beam–column joints externally strengthened with steel cages vol.104, 2015, https://doi.org/10.1016/j.engstruct.2015.09.009
  11. Micromodelling of eccentrically loaded brickwork: Study of masonry wallettes vol.32, pp.5, 2010, https://doi.org/10.1016/j.engstruct.2009.12.050
  12. Load carrying capacity of RC compressed columns strengthened with steel angles and strips vol.40, 2012, https://doi.org/10.1016/j.engstruct.2012.03.006
  13. Design strength of axially loaded RC columns strengthened by steel caging vol.30, pp.10, 2009, https://doi.org/10.1016/j.matdes.2009.05.014
  14. Influence of strips configuration on the behaviour of axially loaded RC columns strengthened by steel angles and strips vol.30, pp.10, 2009, https://doi.org/10.1016/j.matdes.2009.05.010
  15. Axially loaded RC columns strengthened by steel caging. Finite element modelling vol.23, pp.6, 2009, https://doi.org/10.1016/j.conbuildmat.2008.11.014
  16. An experimental study on steel-caged RC columns subjected to axial force and bending moment vol.33, pp.2, 2011, https://doi.org/10.1016/j.engstruct.2010.11.016
  17. Finite element modelling of steel-caged RC columns subjected to axial force and bending moment vol.40, 2012, https://doi.org/10.1016/j.engstruct.2012.02.012
  18. Behaviour of RC columns strengthened by steel caging under combined bending and axial loads vol.25, pp.5, 2011, https://doi.org/10.1016/j.conbuildmat.2010.11.045
  19. Simplified Model for Compressive Behavior of Concrete Columns Strengthened by Steel Angles and Strips vol.136, pp.2, 2010, https://doi.org/10.1061/(ASCE)EM.1943-7889.0000069
  20. Axially loaded RC columns strengthened by steel cages vol.162, pp.3, 2009, https://doi.org/10.1680/stbu.2009.162.3.199
  21. Flexural and axial strengthening of preloaded concrete columns under large eccentric loads by flat and precambered steel plates vol.11, pp.8, 2015, https://doi.org/10.1080/15732479.2014.936879
  22. Experimental study of beam-column joints in axially loaded RC columns strengthened by steel angles and strips vol.8, pp.4, 2008, https://doi.org/10.12989/scs.2008.8.4.329
  23. Theoretical and Experimental Study of Plate-Strengthened Concrete Columns under Eccentric Compression Loading vol.139, pp.3, 2013, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000659
  24. Flexural Behavior of External Beam-Column Reinforced Concrete Assemblages Externally Strengthened with Steel Cages vol.113, pp.5, 2016, https://doi.org/10.14359/51689014
  25. Experimental Investigation of Preloaded RC Columns Strengthened with Precambered Steel Plates under Eccentric Compression Loading vol.15, pp.8, 2012, https://doi.org/10.1260/1369-4332.15.8.1253
  26. Experimental Study and Confinement Analysis on RC Stub Columns Strengthened with Circular CFST Under Axial Load pp.2093-6311, 2018, https://doi.org/10.1007/s13296-018-0054-6
  27. FE modeling of Partially Steel-Jacketed (PSJ) RC columns using CDP model vol.22, pp.2, 2007, https://doi.org/10.12989/cac.2018.22.2.143
  28. Modeling of the Axial Load Capacity of RC Columns Strengthened with Steel Jacketing under Preloading Based on FE Simulation vol.2019, pp.None, 2007, https://doi.org/10.1155/2019/8653247
  29. Repair of Fire-Damaged Reinforced Concrete Members with Axial Load: A Review vol.11, pp.4, 2019, https://doi.org/10.3390/su11040963
  30. Mechanical behaviour of angles used to strengthen rectangular steel columns vol.173, pp.4, 2007, https://doi.org/10.1680/jstbu.18.00076
  31. Eccentric-Axial-Load Test for Composite Columns Using Bolt-Connected Steel Angles vol.146, pp.9, 2007, https://doi.org/10.1061/(asce)st.1943-541x.0002699
  32. Optimal seismic retrofitting of reinforced concrete buildings by steel-jacketing using a genetic algorithm-based framework vol.219, pp.None, 2007, https://doi.org/10.1016/j.engstruct.2020.110864
  33. Influence of the Modulus of Elasticity of CFRPs on the Compressive Behavior of Confined Test Pieces and on the Flexural Behavior of Short Concrete Beams vol.11, pp.2, 2007, https://doi.org/10.3390/app11020491
  34. Flexural testing for composite members with bolt-connected steel angles vol.230, pp.None, 2007, https://doi.org/10.1016/j.engstruct.2020.111638
  35. Experimental and numerical study on the compressive behaviour of partially accessible concrete columns strengthened by a layer of high-performance concrete vol.34, pp.None, 2021, https://doi.org/10.1016/j.istruc.2021.09.048
  36. Cyclic lateral loading test for composite columns with high-strength steel angle cage vol.250, pp.None, 2007, https://doi.org/10.1016/j.engstruct.2021.113463