Relationship Between the Groundwater Resistivity and NaCl Equivalent Salinity in Western and Southern Coastal Areas, Korea

국내 서.남해 해안지역 지하수의 전기비저항과 등가 NaCl 염분도와의 관계

  • Hwang, Se-Ho (Groundwater & Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resource) ;
  • Park, Kwon-Gyu (Groundwater & Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resource) ;
  • Shin, Je-Hyun (Groundwater & Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resource) ;
  • Lee, Sang-Kyu (Vice presidential office, Korea Institute of Geoscience and Mineral Resource)
  • 황세호 (한국지질자원연구원 지하수지열연구부) ;
  • 박권규 (한국지질자원연구원 지하수지열연구부) ;
  • 신제현 (한국지질자원연구원 지하수지열연구부) ;
  • 이상규 (한국지질자원연구원 선임연구부)
  • Published : 2007.11.30

Abstract

In this paper, we suggested the relationship between resistivity of coastal groundwater and NaCl equivalent salinity for the quantitative interpretation the results of surface/borehole resistivity and electromagnetic data. 38 groundwater samples having electrical conductivity higher than about 1,000 ${\mu}S/cm$ were analyzed to derive the empirical relationship between groundwater resistivity and NaCl equivalent salinity. We used Schlumberger chart GEN-8 to convert ion concentration from hydrochemical analysis to the equivalent NaCl salinity, and the portable meter to measure the in situ electrical conductivity of groundwater samples. From the hydrochemical analysis, relationship between the groundwater resistivity $(R_w)$ and equivalent NaCl salinity (Eq_NaCl) is expressed as Eq_NaCl=$5935.3551{\times}R_w^{-1.0993}$, and relationship between the groundwater electrical conductivity (EC) and total dissolved solids (TDS) is expressed as TDS=0.721*EC. We believe these relationships are very useful to assess the seawater intrusion in western and southern coastal area.

본 논문은 지표 및 시추공 전기 전자탐사 결과의 정량적인 해석을 위하여 해안 지하수의 전기비저항과 등가 NaCl 염분도와의 관계식을 제안하였다. 해안에서 10 km 이내에 위치하고 전기전도도가 1,000 ${\mu}S/cm$ 이상인 38개의 지하수 시료에 대한 수리지구화학 분석 결과를 이용하여 전기비저항과 등가 NaCl 염분도와의 관계식을 유도하였다. 수리지구 화학분석 결과의 등가 NaCl 염분도 환산은 Schlumberger 도표 GEN-8을 이용하였으며 전기전도도는 현장에서 휴대용 장비로 측정하였다. 본 논문에서 해안 지하수의 수리지구화학분석 결과를 이용하여 제안한 해안 지하수의 전기비저항$(R_w)$ 과 등가 NaCl 염분도(Eq_NaCl)와의 관계식은 Eq_NaCl=$5935.3551{\times}R_w^{-1.0993}$이며 전기전도도(EC)와 용존고형물총량(TDS)과의 관계식은 TDS=0.721${times}$EC와 같다. 해안대수층 지하수의 전기비저항과 등가 NaCl 염분도 및 TDS와의 관계식은 서 남해 해안지역의 해수침투 평가에 유용하게 이용될 것으로 판단된다.

Keywords

References

  1. 김정일, 황세호, 송영수, 박인화, 신제현, 이상규, 2004, 광역전기 비저항탐사 자료를 이용한 영광 해안지역 해수침투 평가, 한국 지구시스템공학회 춘계학술대회 논문집, 173-177
  2. 박권규, 황세호, 박인화, 박윤성, 신제현, 2004, 염/담수 영역 특 성화를 위한 해안대수층의 지구물리학적 3차원 영상화, 한국 지구시스템공학회 추계학술대회 논문집, 129-134
  3. 이상규, 김세준, 김용욱, 김인기, 김통권, 김현태, 박인화, 신제현, 신현모, 이명종, 이원석, 이태섭, 지세정, 진재화, 허대기, 황세 호, 황인걸, 황학수, 2003, 해수침투 평가, 예측 및 방지기술개 발, 한국지질자원연구원 연구보고서, 00-J-ND-01-B-14, p233
  4. 황세호, 신제현, 이상규, 양승진, 2002, 해안지역 시추공/지표 물 리탐사자료 해석을 위한 등가염분농도 환산식 제안, 한국자원 공학회 추계학술대회 논문집, 129-133
  5. 황세호, 윤성택, 신제현, 이상규, 양승진, 2003, 국내 해안지역 지 하수의 전기비저항과 등가염분농도와의 관계 고찰, 한국지구 시스템공학회 춘계학술대회 논문집, 153-156
  6. Archie, G. E., 1942, The electrical resistivity logs as an aid in determining some reservoir characteristics, Trans. AIME, 146, 54-62 https://doi.org/10.2118/942054-G
  7. Arps, J. J., 1953, The effect of temperature on the density and electrical resistivity of sodium chloride solutions, J. Petrol. Tech., 6, 17-20
  8. Bear, J., Cheng, A. H., Sorek, S., Ouazar, D., and Herrera, I., 1999, Seawater intrusion in coastal aquifers - Concepts, methods and practices, Kluwer Academic Publishers
  9. Desai, K. P., and Moore, E. J., 1969, Equivalent NaCl determination from ionic concentration, The Log Analyst, 10, 12-21
  10. Dresser Industries, 1976, Log interpretation Charts, p6
  11. Dunlap, H. F., and Hawthorne, R. R., 1951, The calculations of water resistivities from chemical analysis, Trans. AIME, 192, 373-375
  12. Edet, A. E., and Okereke, C. S., 2001, A regional study of seawater intrusion in southeastern Nigeria based on analysis of geoelectrical and hydrochemical data, Environmental Geology, 40, 1278-1289 https://doi.org/10.1007/s002540100313
  13. Ellis, D. V., and Singer, J. M., 2007, Well logging for earth scientists, Springer
  14. Etnyre, L. M., 1989, Finding oil and gas from well logs, Van Nostrand Reinhod
  15. Fetter, C. W., 1994, Applied Hydrogeology, Prentice Hall
  16. Fitterman, D. V., and Deszcz-Pan, M., 2004, Characterization of saltwater intrusion in South Florida using electromagnetic geophysical methods, Proceedings of the 18th Salt Water Intrusion Meeting, Cartagena, Spain
  17. Hawkins, M. E., Dietzman, W. P., and Seaward, J. M., 1963, Analysis of brines from oil production formations in South Arkansas and North Louisiana, USBM R.I. 6292
  18. Hawkins, M. E., Dietzman, W. D., and Pearson, C. A., 1964, Chemical analysis and electrical resistivities of oilfield brines from fields in East Texas, USBM R.I. 6422
  19. Helander, D. P., 1983, Fundamentals of formation evaluation, OGCI Publications, Oil & Gas Consultants International, Inc., Tulsa
  20. Hilchie, D. W., 1964, The effect of pressure and temperature on the resistivity of rocks, Ph D. Thesis, University of Oklahoma
  21. Hwang, S., Shin, J., Park, I., and Lee, S., 2004, Assessment of seawater intrusion using geophysical well logging and electrical soundings in a coastal aquifer, Youngkwang-gun, Korea, Exploration Geophysics, 35, 99-104 https://doi.org/10.1071/EG04099
  22. Moore, E. J., 1966, A graphic description of new methods for determining equivalent NaCl concentration from chemical analysis, 7th SPWLA Annual Logging Symposium, M1-M43
  23. Park, S. C, Yun, S. T., Chae, G. T., Yoo, I. S., Shin, K. S., Heo, C. H., and Lee, S. K., 2005, Regional hydrochemical study on salinzation of coastal aquifers, western coastal area of South Korea, J. Hydrology, 313, 182-194 https://doi.org/10.1016/j.jhydrol.2005.03.001
  24. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical recipes in Fotran: The art of scientific computing, Cambridge Press
  25. Rubin, Y., and Hubbard, S., 2005, Hydrogeophysics, Springer
  26. Schlumberger, 1972, Log interpretation Charts, Schlumberger Ltd., New York
  27. Schlumberger, 1979, Log interpretation Charts, Schlumberger Ltd., New York
  28. Schon, J. H., 2004, Physical properties of rocks: Fundamentals and principles of petrophysics, Handbook of geophysical exploration series Volume 18, Elsevier
  29. Sherif, M., El Mahmoudi, A., Garamoon, H., Kacimov, A., Akran, S., Ebraheem, A., and Shetty, A., 2006, Geoelectrical and hydrogeochemical studies for delineating seawater intrusion in the outlet of Wadi Ham, UAE, Environmental Geology, 49, 536-551 https://doi.org/10.1007/s00254-005-0081-4
  30. Song, S. H., Lee, J. Y., and Park, N., 2007, Use of vertical electrical soundings to delineate seawater intrusion in a coastal area of Byunsan, Korea, Environmental Geology, 52, 1207-1219 https://doi.org/10.1007/s00254-006-0559-8
  31. Tiab, D., and Donaldson, E. C., 2004, Petrophysics, Theory and practice of measuring reservoir rock and fluid transport properties, Gulf Professional Publishing
  32. Talash, A.W., and Crawford, Paul B., 1965, An improved method for calculating water resistivities from chemical analysis, J. Petrol. Tech., 17, 1396-1398 https://doi.org/10.2118/1342-PA
  33. Vereecken, H., Binley, A., Cassiani, G., Revil, A., and Titov, K., 2006, Applied Hydrogeophysics, Springer