DOI QR코드

DOI QR Code

Parameterization and Application of Regional Hydro-Ecologic Simulation System (RHESSys) for Integrating the Eco-hydrological Processes in the Gwangneung Headwater Catchment

광릉 원두부 유역 생태수문과정의 통합을 위한 지역 생태수문 모사 시스템(RHESSys)의 모수화와 적용

  • 김은숙 (서울대학교 환경대학원 환경계획학과) ;
  • 강신규 (강원대학교 환경과학과) ;
  • 이보라 (강원대학교 환경과학과) ;
  • 김경하 (국립산림과학원 임지보전과) ;
  • 김준 (연세대학교 대기과학과)
  • Published : 2007.06.30

Abstract

Despite the close linkage in changes between the ecological and hydrological processes in forest ecosystems, an integrative approach has not been incorporated successfully. In this study, based on the vegetation and hydrologic data of the Gwangneung headwater catchment with the Geographic Information System, we attempted such an integrated approach by employing the Regional Hydro-Ecologic Simulation System (RHESSys). To accomplish this, we have (1) constructed the input data for RHESSys, (2) developed an integrated calibration system that enables to consider both ecological and hydrological processes simultaneously, and (3) performed sensitivity analysis to estimate the optimum parameters. Our sensitivity analyses on six soil parameters that affect streamflow patterns and peak flow show that the decay parameter of horizontal saturated hydraulic conductivity $(s_1)$ and porosity decay by depth (PD) had the highest sensitivity. The optimization of these two parameters to estimate the optimum streamflow variation resulted in a prediction accuracy of 0.75 in terms of Nash-Sutcliffe efficiency (NSec). These results provide an important basis for future evaluation and mapping of the watershed-scale soil moisture and evapotranspiration in forest ecosystems of Korea.

산림생태계의 생태과정과 수문과정의 변화는 밀접하게 연관되어 있음에도 불구하고 통합적으로 다루어지지 못해 왔다. 본 연구에서는 광릉 소유역에서 관측되고 있는 식생 및 수문자료와 지리정보시스템(GIS)을 기반으로 지역규모의 생태수문 모사 시스템인 RHESSys를 이용하여 이러한 통합을 시도하였다. 이를 위해, (1) RHESSys의 입력자료를 구축, 모형을 구동하고 (2) 다양한 생태수문과정을 동시에 고려할 수 있는 모형보정체계를 수립하고, (3) 민감도 분석을 통해 최적의 모수를 추정하였다. RHESSys의 유량패턴과 첨두유량에 영향을 주는 6개의 토양모수를 대상으로 민감도를 분석한 결과, 수평 포화 수리 전도도와 공극률의 깊이에 따른 감쇄가 유량에 대해 가장 큰 민감도를 보였다. 이 두 모수를 변화시켜 최적의 유량패턴 적합도를 산출한 결과, 유량예측의 적합도 지수(NSec)는 0.75였다. 이러한 결과는 향후 유역 단위의 토양 수분 및 증발산을 모사하고 그 공간분포를 나타내는 지도 제작을 위한 기본적인 평가기준으로서 매우 중요한 의미를 갖는다.

Keywords

References

  1. Band, L. E., D. S. MacKay, I. F. Creed, R. Semkin, and D. Jeffries, 1996: Ecosystem processes at the watershed scale: sensitivity to potential climate change. Limnology and Oceanography 41, 928-938 https://doi.org/10.4319/lo.1996.41.5.0928
  2. Band, L. E., P. Patterson, R. Nemani, and S. W. Running, 1993: Forest ecosystem processes at the watershed scale: incorporating hillslope hydrology. Agricultural and Forest Meteorology 63, 93-126 https://doi.org/10.1016/0168-1923(93)90024-C
  3. Baron, J. S., M. D. Hartman, T. G. F. Kittel, L. E. Band, D. S. Ojima, and R. B. Lammers, 1998: Effects of land cover, water redistribution, and temperature on ecosystem processes in the South Platte Basin. Ecological Application 8(4), 1037-1051 https://doi.org/10.1890/1051-0761(1998)008[1037:EOLCWR]2.0.CO;2
  4. Barr, A. G., T. A. Black, E. H. Hogg, N. Kljun, K. Morgenstern, and Z. Nesic, 2004: Inter-annual variability in the leaf area index of a boreal aspen-hazelnut forest in relation to net ecosystem production. Agricultural and Forest Meteorology 126, 237-255 https://doi.org/10.1016/j.agrformet.2004.06.011
  5. Dingman, S. L., 1994: Physical Hydrology. Macmillan Publishing Company, New York, USA
  6. Hwang, T. H. 2004: Spatial analysis of carbon and water processes with RHESSys model in the Gwangneung experimental forest. The paper of the Master's degree of Seoul National university
  7. Jung, Y. H., K. H. Kim, C. Y. Lee, C. G. Jung, J. Y. Yu, and J. H. Jeun, 2002: Document of Long-term Monitoring for Forest Hydrology. Korea Forest Research Institute, Seoul, Korea
  8. Kang, S., S. W. Running, J. H. Lim, M. Zhao, C. R. Park, and R. Loehman, 2003: A regional phenology model for detecting onset of greenness in temperate mixed forests, Korea: an application of MODIS leaf area index. Remote Sensing of Environment 126, 232-242
  9. Kim, K., Y. Jeong, and J. Park, 2001: Application of the semi-distributed hydrological model(TOPMODEL) for prediction of discharge at the deciduous and coniferous forest catchment in Gwangneung, Gyeonggi-do, Republic of Korea. Journal of Korean Forest Society 90(2), 197-209
  10. Lim J. H., J. H. Shin, G. Z. Jin, J. H. Chun, and J. S. Oh, 2003: Forest Stand Structure, Site characteristics and carbon budget of the Kwangneung Natural Forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5(2), 101-109
  11. Mackay, D. S., S. Samanta, R. R. Nemani, and L. E. Band, 2003: Multi-objective parameter estimation for simulating canopy transpiration in forested watersheds. Journal of Hydrology 277, 230-247 https://doi.org/10.1016/S0022-1694(03)00130-6
  12. McDonnell, J. J., and R. Woods, 2004: On the need for catchment classification. Journal of Hydrology 299, 2-3 https://doi.org/10.1016/j.jhydrol.2004.09.003
  13. Nash, J. E., and J. V. Sutcliffe, 1970: River flow forecasting through conceptual models. Journal of Hydrology 10(3), 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  14. Phillip, J. R., 1957: The theory of infiltration: 4. Sorptivity and algebraic infiltration equation., Soil Science 84, 257-264 https://doi.org/10.1097/00010694-195709000-00010
  15. Running, S. W., and E. R. Hunt, Jr., 1993: Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. Scaling Physiological Processes: Leaf to Globe, J. R. Ehleringer and C. B. Field (Eds), Academic Press Inc. 141-158
  16. Santhi, C., R. Srinivasan, J. G., Arnold, and J. R. Williams, 2005: A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental Modelling & Software
  17. Schulze, E., F. M. Kelliher, C. Korner, J. Lloyd, and R. Leuning, 1994: Relationships among Maximum Stomatal Conductance, Ecosystem Surface Conductance, Carbon Assimilation Rate, and Plant Nitrogen Nutrition: A Global Ecology Scaling Exercise. Annual Review of Ecology and Systematics 25, 629-662 https://doi.org/10.1146/annurev.es.25.110194.003213
  18. Tague, C. L., and L. E. Band, 2001a: Evaluating explicit and implicit routing for watershed hydro-ecological models of forest hydrology at the small catchment scale. Hydrological Processes 15, 1415-1439 https://doi.org/10.1002/hyp.171
  19. Tague, C. L., and L. E. Band, 2001b: Simulating the impact of road consyruction harvesting on hydrologic response. Earth Surface Processes and Landforms 26, 135-151 https://doi.org/10.1002/1096-9837(200102)26:2<135::AID-ESP167>3.0.CO;2-J
  20. Tague, C. L., and L. E. Band, 2004: RHESSys: Regional Hydro-Ecologic Simulation System-An Object-Oriented Approach to Spatially Distributed Modeling of Carbon, Water, and Nutrient Cycling, Earth Interactions 8(19)
  21. White, M. A., P. E. Thornton, S. W. Running, and R. R. Nemani, 2000: Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: Net Primary Production controls. Earth Interactions 4(3)
  22. Wigmosta, M. S., L. W. Vail, and D. P. Lettenmaier, 1994: A distributed hydrology-vegetation model for complex terrain. Water Resources Research 30, 1665-1679 https://doi.org/10.1029/94WR00436
  23. Zierl, B., H. Bugmann, and C. L. Tague, 2006: Water and carbon fluxes of European ecosystems: An evaluation of the ecohydrological model RHESSys. Hydrological Processes. DOI: 10.1002/hyp.6540

Cited by

  1. Community Structure, Species Diversity of Insects (ants, ground beetles), and Forest Health in the Hongneung Forest vol.102, pp.1, 2013, https://doi.org/10.14578/jkfs.2013.102.1.097
  2. Development of Distributed Ecohydrologic Model and Its Application to the Naeseong Creek Basin vol.46, pp.11, 2013, https://doi.org/10.3741/JKWRA.2013.46.11.1053
  3. Modelling Analysis of Climate and Soil Depth Effects on Pine Tree Dieback in Korea Using BIOME-BGC vol.18, pp.4, 2016, https://doi.org/10.5532/KJAFM.2016.18.4.242