Effect of Host Materials on Eelectrophosphorescence Properties of PtOEP-doped Organic Light-emitting Diodes

  • Kang, Gi-Wook (Department of Physics, Inha University, Students Member, KIDS) ;
  • Lee, Chang-Hee (School of Electrical Engineering and Computer Science and Inter-University Semiconductor Research Center, Seoul national University, Member, KIDS)
  • Published : 2007.06.24

Abstract

We have studied the effect of host materials on the electrophosphorescence properties by comparing three different host materials such as tris(8-hydroxyquinoline)-aluminum (III) $(Alq_3)$, bis(8-hydroxyquinoline)-zinc (II) $(Znq_2)$, and 4,4'-N,N' dicarbazole-biphenyl (CBP) doped with a red-emissive phosphorescent dye, 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin platinum (II) (PtOEP). The EL spectra show a strong red emission (peak at 650 nm) from the triplet excited state of PtOEP and a very weak emission from an electron transport layer of $Alq_3$ and a hole transport layer of N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenyl-4,4'-diamine (TPD). We find that the triplet exciton lifetime and the quantum efficiency decrease in the order of CBP, $Alq_3$, and $Znq_2$ host materials. The results are interpreted as a poor exciton confinement in $Alq_3$, and $Znq_2$ host compared with in CBP. Therefore, it is very important for the triplet-exciton confinement in the emissive layer for obtaining a high efficiency.

Keywords

References

  1. M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature 395, 151 (1998) https://doi.org/10.1038/25954
  2. D. F. O'Brien, M. A. Baldo, M. E. Thompson, S. R. Forrest, 'Improved Energy Transfer in Electrophosphorescent Devices,' Appl. Phys. Lett. 74, 442 (1999) https://doi.org/10.1063/1.123055
  3. M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999) https://doi.org/10.1063/1.124258
  4. C. Adachi, M. A. Baldo, S. R. Forrest, M. E. Thompson, Appl. Phys. Lett. 77, 904 (2000) https://doi.org/10.1063/1.1306639
  5. M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, and Y. Taga, Appl. Phys. Lett. 79, 156 (2001) https://doi.org/10.1063/1.1385182
  6. C. Adachi, R. C. Kwong, P. Djurovich, V.Adamovich, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 79, 2082 (2001) https://doi.org/10.1063/1.1400076
  7. Y. Sun, N. C. Giebink, H. Kanno, B. Ma, M. E. Thompson, and S. R. Forrest, Nature 440, 908 (2006) https://doi.org/10.1038/nature04645
  8. R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund and W. R. Salaneck, Nature 397, 121 (1999) https://doi.org/10.1038/16393
  9. M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals, (Clarendon Press, Oxford, 1982)
  10. B. D. Chin, M. C. Suh, S. T. Lee, H. K. Chung, and C. H. Lee, Appl. Phys. Lett. 84, 1777 (2004) https://doi.org/10.1063/1.1651644
  11. B. D. Chin and C. H. Lee, Adv. Mater. (in press)
  12. Y. Hamada, IEEE Trans. on Electron Dev. 44, 1208 (1997) https://doi.org/10.1109/16.605456
  13. J. Kalinowski, W. Stampor, J. Mezyk, M. Cocchi, D. Virgili, V. Fattori, and P. Di Marco, Phys. Rev. B 66, 235321 (2002) https://doi.org/10.1103/PhysRevB.66.235321
  14. M. A. Baldo and S. R. Forrest, Phys. Rev. B 62, 10958 (2000) https://doi.org/10.1103/PhysRevB.62.10958
  15. M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000) https://doi.org/10.1103/PhysRevB.62.10967
  16. G-W Kang, Y.-J. Ahn, and C. H. Lee, Proc. of the 2nd International Display Manufacturing Conference (2002. 1. 29-31, Seoul), pp. 289-292