Morphology and Rheology on the Blends of PLA/CMPS

  • Shin, Boo-Young (School of Display and Chemical Engineering, Yeungnam University) ;
  • Jo, Gyu-Soon (School of Display and Chemical Engineering, Yeungnam University) ;
  • Kang, Kyoung-Su (School of Display and Chemical Engineering, Yeungnam University) ;
  • Lee, Tae-Jin (School of Display and Chemical Engineering, Yeungnam University) ;
  • Kim, Bong-Shik (School of Display and Chemical Engineering, Yeungnam University) ;
  • Lee, Sang-Il (Channel DM Co., Ltd.) ;
  • Song, Jeong-Sup (Department of Chemistry, Sunmoon University)
  • Published : 2007.06.30

Abstract

The rheological behaviors and morphologies of polylactide (PLA) and chemically modified plasticized starch (CMPS) blends were investigated. For this study, oscillatory shear flow measurements of the PLA, CMPS and their blends were performed. A scanning electron microscope (SEM) study was also conducted on the extracted extrudates of the blends. The morphology of the blend changed in relation to the composition: sphere-shaped CMPS disperse/continuous PLA, rod-like deformed CMPS phase/continuous PLA, a co-continuous structure with bridged CMPS long rods and PLA dispersed/continuous CMPS. The composition of the phase inversion could be estimated and closely coincided from the observed morphology experimental results. The rheological behavior of the blends, from oscillatory measurements, was found to vary in relation to the composition, and reflected the morphologies of the blends. PLA showed Newtonian flow behavior, while CMPS showed strong shear thinning behavior. The relationships between the morphology and rheological properties were observed in detail.

Keywords

References

  1. R. Narayan, National Institute for Standards and Technology, September, 135 (1993)
  2. S. Bloembergaen, J. David, D. Geyer, A. Gustafson, J. Snook, and R. Narayan, in Biodegradable Plastics and Polymers, Y. Doi and K. Fukuda, eds., Elsvier, Osaka, 1993, pp 601-609
  3. R. Narayan, ACS Symposium, 575, 1 (1994)
  4. S. Jacobsen and H. G. Fritz, Polym. Eng. Sci., 36, 2799 (1996)
  5. J. W. Park and S. S. Im, Polym. Eng. Sci., 40, 2539 (2000)
  6. T. Ke and X. Sun, J. Appl. Plym. Sci., 81, 3069 (2001) https://doi.org/10.1002/app.1407
  7. H. Wang, X. Sun, and P. Seib, J. Appl. Plym. Sci., 82, 1761 (2001) https://doi.org/10.1002/app.1816
  8. H. Wang, X. Sun, and P. Seib, J. Appl. Plym. Sci., 84, 1257 (2002)
  9. T. Ke and X. Sun, J. Appl. Plym. Sci., 88, 2947 (2003)
  10. T. Ke and X. Sun, J. Appl. Plym. Sci., 89, 1203 (2003)
  11. H. Wang, X. Sun, and P. Seib, J. Appl. Plym. Sci., 90, 3683 (2003)
  12. J. F. Zhang and X. Sun, J. Appl. Plym. Sci., 94, 1697 (2004)
  13. J. F. Zhang and X. Sun, Biomacromolecules, 5, 1446 (2004)
  14. W. Wiedmann and E. Strobel, Starch, 43, 138 (1991)
  15. R. L. Shorgen, G. F. Fanta, and W. M. Doan, Starch, 45, 276 (1993) https://doi.org/10.1002/star.19930450806
  16. L. Averous, L. Moro, P. Dole, and C. Fringant, Polymer, 41, 4157 (2000)
  17. P. Dubois and R. Narayan, Macromol. Symp., 198, 233 (2003)
  18. B. Y. Shin, G. S. Jo, S. I. Lee, T. J. Lee, B. S. Kim, and R. Narayan, submitted (2006)
  19. R. Narayan, S. Blakrishnan, Y. Nabar, B. Y. Shin, P. Dubois, and J. M. Raquez, U.S. Patent 7, 153, 354 (2006)
  20. S. S. Ray and M. Okamoto, Macromol. Rapid Commun., 24, 815 (2003) https://doi.org/10.1002/marc.200390020
  21. C. D. Han and H. K. Chuang, in Morphology of Polymers, B. Sedlacek, ed., Walter de Gruyter & Co., New York, 1986, pp 103-118
  22. H. V. Oene, in Polymer Blends, D. R. Paul and S. Newman, eds., Academic Press Inc., New York, 1978, pp 296-352
  23. R. Krache, D. Benachour, and P. Pötschke, J. Appl. Polym. Sci., 94, 1976 (2004)
  24. S. H. Jafari, A. Yavari, A. Asadinezhad, H. A. Khonakdar, and F. Böhme, Polymer, 46, 5082 (2005) https://doi.org/10.1016/j.polymer.2004.11.004
  25. L. C. Sawyer and D. T. Grubb, Polymer Microscopy, Champman and Hall Ltd., New York, 1987, pp 155-263
  26. V. A. Alvarez, A. Terenzi, J. M. Kenny, and A. Vazquez, Polym. Eng. Sci., 44, 1907 (2004)
  27. M. Castro, C. Carrot, and F. Prochazka, Polymer, 45, 4095 (2004)
  28. J. A. Galloway, K. J. Koester, B. J. Paasch, and C. W. Macosko, Polymer, 45, 423 (2004)
  29. C. K. Kum, Y. T. Sung, M. S. Han, W. N. Kim, H. S. Lee, S. J. Lee, and J. Joo, Macromol. Res., 14, 456 (2006) https://doi.org/10.1007/BF03219110
  30. H. M. Jeong, M. Y. Choi, and Y. T. Ahn, Macromol. Res., 14, 312 (2006) https://doi.org/10.1007/BF03219087
  31. D. R. Paul and J. W. Barlow, J. Macromol. Sci.-Rev. Macromol. Chem., C18, 109 (1980)
  32. S. Steinmann, W. Gronski, and C. Friedrich, Polymer, 42, 6619 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  33. W. P. Cox and E. H. Merz, J. Polym. Sci., 28, 619 (1958)
  34. S. Steinmann, W. Gronski, and C. Friedrich, Rheology Acta, 41, 77 (2002)
  35. V. Ziegler and B. A. Wolf, J. Rheology, 43, 1033 (1999)
  36. H. J. Choi, S. H. Park, J. S. Yoon, and H. S. Lee, Polym. Eng. Sci., 35, 1636 (1995)
  37. C. D. Han, Multi Phase Flow in Polymer Processing, Academic Press Inc., New York, 1981
  38. A. Utracki and M. R. Karmal, Polym. Eng. Sci., 22, 96 (1982) https://doi.org/10.1002/pen.760221513
  39. H. Kwang, D. Rana, K. Cho, J. Rhee, T. Woo, B. Lee, and S. Choe, Polym. Eng. Sci., 40, 2539 (2000)
  40. Y. Fang, P. J. Carreau, and G. Lafeur, Polym. Eng. Sci., 45, 1254 (2005)
  41. C. Liu, J. Wang, and J. He, Polymer, 43, 3811 (2002)
  42. J. Y. Kim, S. W. Kang, S. H. Kim, B. C. Kim, K. B. Shim, and J. G. Lee, Macromol. Res., 13, 19 (2005)
  43. K. J. Hwang, J. W. Park, I. Kim, C. S. Ha, and G. H. Kim, Macromol. Res., 14, 179 (2006) https://doi.org/10.1007/BF03218506
  44. J. U. Park, J. L. Kim, D. H. Kim, K. H. Ahn, S. J. Lee, and K. S. Cho, Macromol. Res., 14, 318 (2006) https://doi.org/10.1007/BF03219088
  45. H. H. Yang, C. D. Han, and J. K Kim, Polymer, 35, 1503 (1994)