Life Time Prediction of Rubber Gasket for Fuel Cell through Its Acid-Aging Characteristics

  • Kim, Mi-Suk (Department of Polymer Science and Engineering, College of Engineering, Gyeongsang National University) ;
  • Kim, Jin-Hak (Department of Polymer Science and Engineering, College of Engineering, Gyeongsang National University) ;
  • Kim, Jin-Kuk (Department of Polymer Science and Engineering, College of Engineering, Gyeongsang National University) ;
  • Kim, Seok-Jin (R&D Center, Dong-A Hwa Sung Co. Ltd.)
  • Published : 2007.06.30

Abstract

The present manuscript deals with the prediction of the lifetime of NBR compound based rubber gaskets for use as fuel cells. The material was investigated at 120, 140 and $160^{\circ}C$, with aging times from 3 to 600 h and increasing $H_2SO_4$ concentrations of 5, 6, 7 and 10 vol%. Both material and accelerated acid-heat aging tests were carried out to predict the useful life of the NBR rubber gasket for use as a fuel cell stack. To investigate the effects of acid-heat aging on the performance characteristics of the gaskets, the properties of the NBR rubber, such as crosslink density and elongation at break, were studied. The hardness of the NBR rubber was found to decrease with decreasing acid concentration at both $120\;and\;140^{\circ}C$, but at $160^{\circ}C$, the hardness of the NBR rubber increased abruptly in a very short time at different acid concentrations. The tensile strength and elongation at break were found to decrease with increases in both the $H_2SO_4$ concentration & temperature. The observed experimental results were evaluated using the Arrhenius equation.

Keywords

References

  1. J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd ed., Wiley, UK, 2003
  2. H. D. Cho, J. Won, H. Y. Ha, and Y. S. Kang, Macromol. Res., 14, 214 (2006) https://doi.org/10.1007/BF03218512
  3. J. Li, C. H. Lee, H. B. Park, and Y. M. Lee, Macromol. Res., 14, 438 (2006) https://doi.org/10.1007/BF03219107
  4. K. T. Gillen, R. Bernstein, and M. H. Wilson, Polym. Degrad. Stabil., 87, 335 (2005)
  5. K. T. Gillen, R. Bernstein, and M. Celina, Polym. Degrad. Stabil., 87, 257 (2005)
  6. K. T. Gillen, R. Bernstein, and D. K. Derzon, Polym. Degrad. Stabil., 87, 57 (2005)
  7. K. T. Gillen, M. Celina, and R. Bernstein, Polym. Degrad. Stabil., 82, 25 (2003)
  8. M. Celina and K. T. Gillen, Polym. Preprints, 42(1), 367-368 (2001)
  9. J. Wise, K. T. Gillen, and R. L. Clough, Polym. Degrad. Stabil., 49, 403 (1995)
  10. M. LeHuy and G. Evrard, Die Angewandte Makromol. Chem., 261/262, 135 (1998)
  11. E. L. G. Denardin, P. R. Janissek, and D. Samios, Thermochimica Acta, 395, 159 (2003)
  12. H. Nakauchi, Kautsch. Gummi Kunstst., 49, 843 (1996)
  13. G. P. Streit and M. Achenbach, Tribology 2000-Plus: 12th International Colloquium, Ostfildern, Germany, January, pp. 1419-1431 (2000)
  14. J. H. Jung, A study on Life Time Prediction and Aging property of Rubber Products for Automobile, Gyeongsang national Univ., M.S. thesis (2005)
  15. S. J. Kim, Kinetics of Dilute Acid Pretreatment of Woody Hemicellulose, Gyeongsang National Univ., M.S. thesis (1997)
  16. P. J. Flory and J. Rehner, Jr., J. Chem. Phys., 11, 521 (1943)
  17. P. J. Flory, J. Chem. Phys., 18, 108 (1950) https://doi.org/10.1063/1.1747817
  18. D. S. Campbell and A. V. Chapman, J. Nut. Rubber Res., 5, 246 (1990)
  19. C. G. Moore and W. F. Watson, J. Polym. Sci., 19, 237 (1956)
  20. L. Mullins, J. Appl. Polym. Sci., 2, 1 (1959)
  21. S. G. Kim and S. H. Lee, Polymer (Korea), 18, 176 (1994)
  22. Khairi Nagdi, Rubber as an Engineering Material: Guideline for Users, Hanser Gardner Publications, Munich, 1993
  23. J. H. Jung, A study on Life Time Prediction and Aging property of Rubber Products for Automobile, Gyeongsang national Univ., M.S. thesis (2005)