An Efficient Method for Synthesis of PEO-Based Macromonomer and Macroinitiator

  • Kim, Jung-Ahn (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University) ;
  • Choi, Song-Yee (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University) ;
  • Kim, Kyung-Min (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University) ;
  • Go, Da-Hyeon (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University) ;
  • Jeon, Hee-Jeong (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University) ;
  • Lee, Jae-Yeol (Research Institute of Basic Sciences and Department of Chemistry, Kyung Hee University) ;
  • Park, Hyeong-Soo (Department of Chemical Engineering, Sogang University) ;
  • Lee, Cheol-Han (Department of Chemical Engineering, Sogang University) ;
  • Park, Heung-Mok (Department of Chemical Engineering, Sogang University)
  • Published : 2007.06.30

Abstract

The n-butyllithium-initiated ring-opening polymerization of ethylene oxide, in a mixture of benzene and dimethylsulfoxide (DMSO), between $25-45^{\circ}C$, with potassium tert-butoxide, is a useful and powerful method to control the molecular weight as well as achieve a quantitative chain-end functionalization yield of the resulting polymeric alkoxide via a one pot synthesis. The molecular weight of the product could be controlled by adjusting the ratio of grams of monomer to moles of initiators, such as n-butyllithium ([n-BuLi]) and potassium t-butoxide ([t-BuOK]). The yields for the macromonomer and ${\omega}-brominated$ poly(ethylene oxide) (PEO) were quantitative in relation to the chain-end functionalizations of the polymeric alkoxide formed. The resulting products were characterized by a combination of $^1H-NMR$ spectroscopic and size exclusion chromatographic analyses.

Keywords

References

  1. Advances in lithium-ion batteries, B. Scrosati and W. Schalkwijk, Eds., Plenum, New York, 2002
  2. J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001)
  3. F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, and R. Caminiti, J. Phys. Chem. B, 103, 10632 (1999) https://doi.org/10.1021/jp9845219
  4. D. Swierczynski, A. Zalewska, and W. Wieczorek, Chem. Mater., 13, 1560 (2001) https://doi.org/10.1021/cm002007l
  5. H.-M. Xiong, D.-P. Liu, H. Zhang, and J.-S. Chen, J. Mater. Chem., 14, 2775 (2004)
  6. J. M. Harris and R. B. Chess, Nature Rev. Drug Disc., 2, 214 (2003) https://doi.org/10.1038/nrd1003
  7. R. Duncan, Nature Rev. Drug Disc., 2, 347 (2003) https://doi.org/10.1038/nrd1003
  8. M. Sharpe, S. E. Easthope, G. M. Keating, and H. M. Lamb, Drugs, 62, 2089 (2002)
  9. R. Satchi-Tainaro, R. Duncan, and C. M. Barnes, Adv. Polym. Sci., 193, 1 (2006) https://doi.org/10.1007/12_024
  10. J.-F. Lutz and A. Hoth, Macromolecules, 39, 893 (2006)
  11. T.-L. Cheng, C.-M. Cheng, B.-M. Chen, S.-A. Tsao, K.-H. Chuang, S.-W. Hsiao, Y.-H. Lin, and S. R. Roffler, Biconjugate Chem., 16, 1225 (2005)
  12. W. S. Shim, J. S. Lee, and D. S. Lee, Macromol. Res., 13, 344 (2005)
  13. R. P. Quirk, Anionic synthesis of polymers with functional groups, in Comprehensive Polymer Science, S. L. Aggarwal and S. Russo, Eds., Pregamon Press, Seoul, 1992, Suppl. Vol., Chap. 5, pp 82-106
  14. R. P. Quirk and J. Kim, Macromonmers and Macroinitiators, in Ring-opening Polymerization; Mechanisms, Catalysis, Structure, Utility, D. J. Brunelle, Ed., Hanser, New York, 1993, Chap. 9, pp 263-293
  15. S. Slomkowski and A. Duda, Anionic Ring-Opening Polymerization, in Ring-opening Polymerization; Mechanisms, Catalysis, Structure, Utility, D. J. Brunelle, Ed., Hanser, New York, 1993, Chap. 3, pp 87-128
  16. H. L. Hsieh and R. P. Quirk, Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, New York, 1996, Chap. 24, pp 685-710
  17. D. H. Richards and M. Szwarc, Trans. Faraday Soc., 55, 1644 (1959) https://doi.org/10.1039/tf9595500959
  18. L. E. St. Pierre and C. C. Price, J. Am. Chem. Soc., 78, 3432 (1956)
  19. B. Esswein and M. Moller, Angew. Chem. Int. Ed. Engl., 35, 623 (1996)
  20. R. P. Quirk, J. Kim, C. Kausch, and M. Chun, Polym. Int., 39, 3 (1996)
  21. R. P. Quirk, J. Kim, K. Rodrigues, and W. L. Mattice, Makromol. Chem., Macromol. Symp., 42/43, 463 (1991)
  22. M. Morton and L. J. Fetters, Rubber Chem. Technol., 48, 359 (1975)
  23. J. M. Stouffer and T. J. McCarthy, Macromolecules, 21, 1204 (1988)
  24. H. Gilman and F. K. Cartledge, J. Organomet. Chem., 2, 447 (1964)
  25. A. Napoli, N. Tirelli, G. Kilcher, and J. A. Hubbell, Macromolecules, 34, 8913 (2001) https://doi.org/10.1021/ma002404h
  26. R. P. Quirk and J. J. Ma, J. Polym. Sci.; Part A: Polym. Chem., 24, 2031 (1988)
  27. V. Halaska, L. Lochmann, and D. Lim, Collect. Czec. Chem. Commun., 33, 3245 (1968) https://doi.org/10.1135/cccc19680968
  28. J. E. Figueruelo and D. J. Worsfold, Eur. Polym. J., 4, 439 (1968)
  29. M. Schlosser, J. Organomet. Chem., 8, 9 (1967)
  30. L. Brandsma and H. Verkruijsse, Preparative Polar Organometallic Chemistry 1, Springer-Verlag, Berlin Heidelberg, 1987, Chap. II, p 41
  31. C. E. H. Bawn, A. Ledwith, and N. McFarlane, Polymer, 10, 653 (1969)
  32. C. C. Price and D. D. Carmelite, J. Am. Chem. Soc., 88, 4039 (1966)
  33. H. L. Hsieh and R. P. Quirk, Anionic Polymerization: Principles and Practical Applications, Marcel Dekker, New York, 1996, Chap. 4, pp 71-92