DOI QR코드

DOI QR Code

A Study on Mechanical Properties of IPMC actuators

IPMC 작동기의 기계적 물성에 관한 연구

  • 김홍일 (한국과학기술원 기계항공시스템학부 항공우주공학 대학원) ;
  • 김대관 (한국과학기술원 기계항공시스템학부 항공우주공학 대학원) ;
  • 한재흥 (한국과학기술원 기계항공시스템학부 항공우주공학)
  • Published : 2007.06.30

Abstract

The Ionic Polymer Metal Composite (IPMC), an electro-active polymer, has many advantages including bending actuation, low weight, low power consumption, and flexibility. These advantages coincide with the requirements of a bio-related application. Thus, IPMC is promising materials for bio-mimetic actuator and sensor applications. Before applying IPMC to actual application, basic mechanical properties of IPMC should be studied in order to utilize IPMC for practical uses. Therefore, IPMCs are fabricated to investigate the mechanical characteristics. Nafion is used as a base ionic polymer. Mason samples cast with various thicknesses are used to test the thickness effects of IPMC. Subsequently, IPMC is fabricated using the chemical reduction method. The deformation, blocking force and frequency response of the IPMC actuator are important properties. In this present study, the performances of the IPMC actuators, including the deformation, blocking force and natural frequency, are then obtained according to only the input voltage and IPMC dimensions. Finally, the empirical performance model and the equivalent stiffness model of the IPMC actuator are established using experiments results.

본 연구에서는 IPMC의 기본적인 기계적 특성을 알아보았다. 기전폴리머의 한 종류인 IPMC는 굽힘형 작동, 가벼움, 저전력 소모, 유연성 등의 많은 장점을 가진 재료이다. 따라서 IPMC는 생체모방형 작동기와 센서로서 많은 가능성을 가지고 있다. 이런 가능성을 바탕으로 IPMC를 실제로 응용하기 위하여 IPMC의 변형, 구동력, 주파수 응답 등 기본적인 기계적 특성을 연구하였다. 우선 이온교환폴리머의 한 종류인 네피온 용액을 사용하여 여러 가지 두께의 네피온 막을 만들고, 무전해 도금을 통해 IPMC를 제작하였다. 이렇게 제작된 IPMC의 규격, 인가 전압에 따른 변형, 구동력, 주파수 응답 특성에 관한 실험을 수행하고, 실험 결과를 통해 IPMC 성능의 실험식과 등가 강성 모델을 수립하였다.

Keywords

References

  1. K. Oguro, K. Asaka and H. Takenaka, 'Actuator Element,' US Patent specification 5,268,082, 1993
  2. M. Shahinpoor and K.J. Kim, 'Ionic Polymer-metal Composites: I .Fundamentals,' Smart Materials and Structures, Vol. 10, 2001, pp. 819-833 https://doi.org/10.1088/0964-1726/10/4/327
  3. S. Tadokoro, S. Yamagami, T. Takamori and K. Oguro, 'Modeling of Nafion-Pt Composite Actuators (ICPF) by Ionic Motion,' Proceeding of SPIE, Smart Structures and Materials, Vol. 3987, 2000, pp. 92-102
  4. S.K. Lee, H.C. Park and K.J. Kim, 'Equivalent Modeling for Ionic Polymer-metal Composite Actuators Based on Beam Theories,' Smart Materials and Structures, Vol. 14, No.6, 2005, pp. 1363-1368 https://doi.org/10.1088/0964-1726/14/6/028
  5. H.C. Park, K.J. Kim, S.K. Lee and Y.J. Chah, 'Electro-mechanical Flapping Produced by Ionic PolymerMetal Composites,' Proceeding of SPIE, Smart Structures and Materials, Vol. 5385, 2004, pp. 242-248
  6. S.K. Lee, K.J. Kim and H.C. Park, 'Design and Performance Analysis of a Novel IPMC-driven micropump,' Proceeding of SPIE, Smart Structures and Materials, Vol. 5759, 2005, pp. 439-446
  7. Technical Information, 'Dupont fuel cells, Safe Handling and Use of Perfluorosulfonic Acid Polymer,' http://www.dupont.com/fuelcells/pdf/dfc301.pdf