Expression of Antihypertensive Peptide, His-His-Leu, as Tandem Repeats in Escherichia coli

  • Jeong, Do-Won (Department of Agricultural Biotechnology, Seoul National University) ;
  • Shin, Dong-Seok (Department of Agricultural Biotechnology, Seoul National University) ;
  • Ahn, Chang-Won (Research and Business Development Center) ;
  • Song, In-Sang (Research and Business Development Center) ;
  • Lee, Hyong-Joo (Department of Agricultural Biotechnology, Seoul National University)
  • Published : 2007.06.30

Abstract

His-His-Leu (HHL), a tripeptide derived from a Korean soybean paste, is an angiotensin-I-converting enzyme (ACE) inhibitor. We report here a method of producing this tripeptide efficiently by expressing tandem multimers of the codons encoding the peptide in E. coli and purifying the HHL after hydrolysis of the peptide multimers. The HHL gene, tandemly multimerized to a 40-mer, was ligated with ubiquitin as a fusion gene (UH40). UH40 was inserted into vector pET29b; the UH40 fusion protein was then produced in E. coli BL21. The recombinant UH40 protein was purified by cation-exchange chromatography with a yield of 17.3mg/l and analyzed by matrixassisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry and protein N-terminal sequencing. Leucine aminopeptidase was used to cleave a 405-Da HHL monomer from the UH40 fusion protein and the peptide was purified using reverse-phase high-performance liquid chromatography (HPLC) on a C18 HPLC column, with a final yield of 6.2mg/l. The resulting peptide was confirmed to be HHL with the aid of MALDI-TOF mass spectrometry, glutamine-TOF mass spectrometry, N-terminal sequencing, and measurement of ACE inhibiting activity. These results suggest that our production method is useful for obtaining a large quantity of recombinant HHL for functional antihypertensive peptide studies.

Keywords

References

  1. Abubakar, A., T. Saito, H. Kitazawa, Y. Kawai, and T. Itoh. 1998. Structural analysis of new antihypertensive peptides derived from cheese whey protein by proteinase K digestion. J. Dairy Sci. 81: 3131-3138 https://doi.org/10.3168/jds.S0022-0302(98)75878-3
  2. Baker, R. T. 1996. Protein expression using ubiquitin fusion and cleavage. Curr. Opin. Biotechnol. 7: 541-546 https://doi.org/10.1016/S0958-1669(96)80059-0
  3. Baker, R. T., A. M. Catanzariti, Y. Karunasekara, T. A. Soboleva, R. Sharwood, S. Whitney, and P. G. Board. 2005. Using deubiquitylating enzymes as research tools. Methods Enzymol. 398: 540-554 https://doi.org/10.1016/S0076-6879(05)98044-0
  4. Butt, T. R., S. Jonnalagadda, B. P. Monia, E. J. Sternberg, J. A. Marsh, J. M. Stadel, D. J. Ecker, and S. T. Crooke. 1989. Ubiquitin fusion augments the yield of cloned gene products in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 2540-2544
  5. Choi, H.-J., M.-J. Seo, J.-C. Lee, C.-I. Cheigh, H. Park, C. Ahn, and Y.-R. Pyun. 2005. Heterologous expression of human ${\beta}-defensin-1$ in bacteriocin-producing Lactococcus lactis. J. Microbiol. Biotechnol. 15: 330-336
  6. Cushman, D. W. and H. S. Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20: 1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
  7. Dostal, D. E. and K. M. Baker. 1999. The cardiac reninangiotensin system: Conceptual, or a regulator of cardiac function? Circ. Res. 85: 643-650 https://doi.org/10.1161/01.RES.85.7.643
  8. Han, K., J. Hong, H. C. Lim, C. H. Kim, Y. Park, and J. M. Cho. 1994. Tyrosinase production in recombinant E. coli containing trp promoter and ubiquitin sequence. Ann. N. Y. Acad. Sci. 721: 30-42 https://doi.org/10.1111/j.1749-6632.1994.tb47374.x
  9. Hershko, A., A. Ciechanover, and A. Varshavsky. 2000. Basic Medical Research Award. The ubiquitin system. Nat. Med. 6: 1073-1081 https://doi.org/10.1038/80384
  10. Jung, J. M., Y. B. Shin, M. G. Kim, H. S. Ro, H. T. Jung, and B. H. Chung. 2004. A fusion protein expression analysis using surface plasmon resonance imaging. Anal. Biochem. 330: 251-256 https://doi.org/10.1016/j.ab.2004.02.009
  11. Kim, Y. K., S. Yoon, D. Y. Yu, B. Lonnerdal, and B. H. Chung. 1999. Novel angiotensin-I-converting enzyme inhibitory peptides derived from recombinant human alpha s1-casein expressed in Escherichia coli. J. Dairy Res. 66: 431-439 https://doi.org/10.1017/S0022029999003556
  12. Koo, K.-C., D.-Y. Lee, J.-H. Kim, H.-E. Yu, J.-S. Park, and J.-S. Lee. 2006. Production and characterization of antihypertensive angiotensin I-converting enzyme inhibitor from Pholiota adiposa. J. Microbiol. Biotechnol. 16: 757- 763
  13. Lee, J. H., I. Minn, C. B. Park, and S. C. Kim. 1998. Acidic peptide-mediated expression of the antimicrobial peptide buforin II as tandem repeats in Escherichia coli. Protein Expr. Purif. 12: 53-60 https://doi.org/10.1006/prep.1997.0814
  14. Lv, G. S., G. C. Huo, and X. Y. Fu. 2003. Expression of milk-derived antihypertensive peptide in Escherichia coli. J. Dairy Sci. 86: 1927-1931 https://doi.org/10.3168/jds.S0022-0302(03)73779-5
  15. Nakamura, Y., N. Yamamoto, K. Sakai, and T. Takano. 1995. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I-converting enzyme. J. Dairy Sci. 78: 1253-1257 https://doi.org/10.3168/jds.S0022-0302(95)76745-5
  16. Park, C. J., J. H. Lee, S. S. Hong, H. S. Lee, and S. C. Kim. 1998. High-level expression of the angiotensin-convertingenzyme- inhibiting peptide, YG-1, as tandem multimers in Escherichia coli. Appl. Microbiol. Biotechnol. 50: 71-76 https://doi.org/10.1007/s002530051258
  17. Park, E., Y. K. Chae, J.-Y. Lee, B. Lee, and Y. Kim. 2006. Expression and purification of a cathelicidin-derived antimicrobial peptide, CRAMP. J. Microbiol. Biotechnol. 16: 1429-1433
  18. Rao, X., J. Hu, S. Li, X. Jin, C. Zhang, Y. Cong, X. Hu, Y. Tan, J. Huang, Z. Chen, J. Zhu, and F. Hu. 2005. Design and expression of peptide antibiotic hPAB-beta as tandem multimers in Escherichia coli. Peptides 26: 721-729 https://doi.org/10.1016/j.peptides.2004.12.016
  19. Shin, Z. I., C. W. Ahn, H. S. Nam, H. J. Lee, H. J. Lee, and T. H. Moon. 1995. Fractionation of angiotensin converting enzyme inhibitory peptide from soybean paste. Korean J. Food Sci. Technol. 27: 230-234
  20. Shin, Z. I., R. Yu, S. A. Park, D. K. Chung, C. W. Ahn, H. S. Nam, K. S. Kim, and H. J. Lee. 2001. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo. J. Agric. Food Chem. 49: 3004-3009 https://doi.org/10.1021/jf001135r
  21. Weber, M. A. 2006. Hypertension treatment and implications of recent cardiovascular outcome trials. J. Hypertens. Suppl. 24: S37-S44 https://doi.org/10.1097/01.hjh.0000198044.69999.31
  22. Wing, S. S. 2003. Deubiquitinating enzymes -- the importance of driving in reverse along the ubiquitin-proteasome pathway. Int. J. Biochem. Cell Biol. 35: 590-605 https://doi.org/10.1016/S1357-2725(02)00392-8
  23. Yamamoto, N., M. Ejiri, and S. Mizuno. 2003. Biogenic peptides and their potential use. Curr. Pharm. Des. 9: 1345- 1355 https://doi.org/10.2174/1381612033454801
  24. Yamamoto, N., M. Maeno, and T. Takano. 1999. Purification and characterization of an antihypertensive peptide from a yogurt-like product fermented by Lactobacillus helveticus CPN4. J. Dairy Sci. 82: 1388-1393 https://doi.org/10.3168/jds.S0022-0302(99)75364-6
  25. Zaman, M. A., S. Oparil, and D. A. Calhoun. 2002. Drugs targeting the renin-angiotensin-aldosterone system. Nat. Rev. Drug Discov. 1: 621-636 https://doi.org/10.1038/nrd873