Isolation and Characterization of Major Glycosphingolipid from Rice Bran Extract

쌀겨 추출물로부터 스핑고당지질의 분리와 구조결정

  • Mitsutake, Susumu (Department of Biomembrane and Biofunctional Chemistry, Graduate School of Pharmaceutical Science, Hokkaido University) ;
  • Okada, Tadashi (Oriza Oil & Fat Chemical Co.) ;
  • Kang, Byoung-Won (Department of Chemistry, Dong-eui University)
  • Published : 2007.03.31

Abstract

In order to examine the biofunctions of glycosylceramide which is representative of sphingolipid, monoglycosylceramide (cerebroside) was isolated from rice bran extract. Crude glycosylceramides were isolated in large quantities and promptly by flash system column chromatography from rice bran extract, and purified by normal-phase HPLC using an evaporative light-scattering detector. One major cerebroside was obtained by HPLC used as an eluent consisting of chloroform, methanol and water (99:11:1, v/v/v), and the constituents were analyzed by MALDI/TOF-MS, FAB-MS, GC and 600 MHz $^1$H-NMR. The component sugar was estimated to be glucose. In the ceramide, the fatty acid component consist was 2-hydroxy arachidic acid. The long-chain base component was sphinga-4,8-dienine.

대표적인 스핑고지질인 글리코실세라미드의 생리적 기능을 조사하기 위하여 쌀겨 추출물로부터 cerebroside를 분리하였다. 정제하지 않은 글리코실세라미드를 flash system 칼럼으로 분리한 후 ELSD를 검출기로 사용하여 순상 HPLC로 정제하였다. 클로로포름 : 메탄올 : 증류수(99:11:1, v/v/v)을 용출용매로 사용하여 주요 cerebroside를 얻을 수 있었고, MALDI/TOF-MS, FAB-MS, GC, 600MHz $^1$H-NMR로 구조를 분석하였다. 구성당은 글루코오스였고 cerebroside의 구성 지방산은 2-hydroxy-arachidic산이었다. 장쇄 염기는 sphinga-4,8-dienine이었다.

Keywords

References

  1. Harwood, J. L. (1980) Plant acyl lipids; structure, distribution and analysis. In The biochemistry of plants, Conn, E. E. pp. 1- 55, Academic press, New York
  2. Sastry, P. S. (1974) Glycosyl glycerides. Adv. Lipid Res. 12, 251-310
  3. Olsen, I. and Jantzen, E. (2001) Sphingolipids in bacteria and fungi. Anaerobe 7, 103-112 https://doi.org/10.1006/anae.2001.0376
  4. Meer, G. and Holthuis, J. C. M. (2000) Sphingolipid transport in eukaryotic cells. Biochim. Biophys. Acta 1486, 145-170 https://doi.org/10.1016/S1388-1981(00)00054-8
  5. Dickson, R. C. and Lester, R. L (2002) Sphingolipid functions in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1583, 13- 25 https://doi.org/10.1016/S1388-1981(02)00210-X
  6. Kawai, G., Ohnishi, M., Fujino, Y. and Ikeda, Y. (1986) Stimulatory effect of certain plant sphingolipids on fruiting of Schizophyllum commune. J. Biol. Chem. 261, 779-784
  7. Okuyama, E., Hasegawa, T., Matsushita, T., Fujimoto, H., Ishibashi, M. and Yamazaki, M. (2001) Analgesic Components of Saposhnikovia Root (Saposhnikovia divaricata). Chem. Pharm. Bull. 49, 154-160 https://doi.org/10.1248/cpb.49.154
  8. Foulon, V. B., Godeau, G., Guessous, F., Lati, E., Rousset, G., Arveiller, M. R. and Hornebeck, W. (1995) Inhibition of human neutrophil elastase by wheat ceramides. Int. J. Cosmet. Sci. 17, 255-264 https://doi.org/10.1111/j.1467-2494.1995.tb00130.x
  9. Vesper, H., Schmelz, E. M., Karakashian, N. N., Dillehay, D. L., Lynch, D. V. and Merrill, A. H. (1999) Sphingolipids in food and the emering importance of sphingolipids to nutrition. J. Nutr. 129, 1239-1250 https://doi.org/10.1093/jn/129.7.1239
  10. Imokawa, G. (1995) Structure and function of intercellular lipids in the stratum corneum. J. Oleo Sci. 44, 51-66
  11. Yahagi, K. and Iwai, H. (1996) Application of surfactants in personal care products. J. Jpn. Oil Chem. Soc. 45, 1133-1143 https://doi.org/10.5650/jos1996.45.1133
  12. Ohnishi, M., Kawase, S., Kondo, Y., Fujuno, Y. and Ito, S. (1996) Identification of major cerebrosidespecies in seven edible mushrooms. J. Jpn. Oil Chem. Soc. 45, 51-56 https://doi.org/10.5650/jos1996.45.51
  13. Sugawara, T. and Miyazaya, T. (1999) Separation and determination of glycolipids from edible plant sources by highperformance liquid chromatography and evaporative lightscattering detection. Lipids. 34, 1231-1237 https://doi.org/10.1007/s11745-999-0476-3
  14. Imai, H., Ohnishi, M., Kinoshita, M., Kojima, M. and Ito, S. (1995) Structure nad distribution of cerebroside containg unsaturated hydroxy fatty acids in plant leaves. Biosci. Biotech. Biochem. 59, 1309-1313 https://doi.org/10.1271/bbb.59.1309
  15. Mano, Y., Kawaminami, K., Kojima, M. and Ohnishi, M. (1999) Comparative composition of brown rice lipids (lipid fractions) of India and Japonica rice. Biosci. Biotech. Biochem. 63, 619-626 https://doi.org/10.1271/bbb.63.619
  16. Carter, H. E., Hendry, R. A., Nojima, S., Stanacev, N. Z. and Ohno, K. (1961) Biochemistry of the sphingolipids. J. Biol. Chem. 236, 1912-1916
  17. Hayashi, A. and Matsubara, T. (1971) Determination of the structure of sphinga-4,8-dienine from oyster gylcolipids by gas chromatography and mass spectrometry. Biochim. Biophys. Acta 248, 306-314 https://doi.org/10.1016/0005-2760(71)90019-1
  18. Kashima, M., Nakagawa, K., Sugawara, T., Miyazawa, T., Murakami, C., Miyashita, R., Ono, J., Deschamps, F. S. and Chaminade, P. (2002) Method for Quantitative determination of cerebroside in 'plant ceramide' foodstuffs by high perfomance liquid chromatography with evaporative light scattering detection. J. Oleo Sci. 51, 347-354 https://doi.org/10.5650/jos.51.347
  19. Lomas, M. M. and Chapman, D. (1973) Structure studies on gylcolipids. patr 1: 220MHz NMR spectra of acetylated galactocerebrosides. Chem. Phys. Lipids 10, 152-164 https://doi.org/10.1016/0009-3084(73)90012-1
  20. Sun, Y., Liu, Kai, Hua, H., Zhu, H. and Pei, Y. (2006) Gracilarioside and Gracilamides from red Alga Gracilaria asiatica. J. Nat. Prod. 69, 1488-1491 https://doi.org/10.1021/np060043e
  21. Takakuwa, N., Tanji, M., Oda, Y. and Ohnishi, M. (2002) Distribution of 9-methyl sphingoid base in Mushrooms and its effects on the fluidity of phospholipid liposomes. J. Oleo Sci. 51, 741-747 https://doi.org/10.5650/jos.51.741
  22. Karlsson, K. A., Pascher, I. Samuelsson, B.E. and Steen, G. O. (1972) Mass spectra of trimethylsilyl derivatives of homogeneous ceramides. Chem. Phys. lipids 9, 230-246 https://doi.org/10.1016/0009-3084(72)90004-7
  23. Sperling, P. and Heinz, E. (2003) Plant sphingolipids: structure diversity, biosynthesis, first genes and functions. Biochim. Biophys. Acta 1632, 1-15 https://doi.org/10.1016/S1388-1981(03)00033-7