CHIME Ages of Precambrian Rocks from the Goseong-Ganseong Area, Northeastern Part of the Gyeonggi Massif, and Their Tectonic Implications

경기육괴 북동부 고성-간성 지역 선캠브리아 암석의 CHIME 연대와 그 지체구조적 의의

  • Cho, Deung-Lyong (Division of Geology and Geoinformation, Korea Institute of Geoscience and Mineral Resources) ;
  • Suzuki, Kazuhiro (Center for Chronological Research, Nagoya University) ;
  • Chwae, Uee-Chan (Division of Geology and Geoinformation, Korea Institute of Geoscience and Mineral Resources) ;
  • Adachi, Mamoru (Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University)
  • 조등룡 (한국지질자원연구원 지질기반정보연구부) ;
  • ;
  • 최위찬 (한국지질자원연구원 지질기반정보연구부) ;
  • Published : 2007.03.30

Abstract

CHIME (chemical Th-U-total Pb isochron) geochronology were made for Precambrian rocks from Goseong-Ganseong area, northeastern part of the Gyeonggi massif. Zircon and/or monazite grains from orthogneisses give $1672{\pm}69\;to\;1414{\pm}36Ma$ ages, and monazite grains from paragneisses yield similar ages ranging from $1703{\pm}70\;to\;1395{\pm}97Ma$ suggesting that $1.7{\sim}1.4Ga$ igneous intrusions and coeval metamorphisms were occurred over the area. Together with reported prevailing $1.9{\sim}1.8Ga$ igneous activities and regional metamorphism from the Cyeonggi massif, our age data from Goseong-Ganseong area would be potentially correlated with long-lived $(1.8{\sim}1.3Ga)$ global tectonotermal events in marginal outgrowth of supercontinent Columbia which was finally assembled by collisional orogenies at ${\sim}1.8Ga$. Petrological and geochmical studies, however, should be followed to confirm this tectonic interpretation.

경기육괴 북동부 고성-간성 지역에 분포하는 선캠브리아 암석의 CHIME 연대를 측정하였다. 정편마암류의 모나자이트 및 저어콘은 $1672{\pm}69Ma$내지 $1414{\pm}36Ma$이고, 준편마암류의 모나자이트는 $1703{\pm}70Ma$내지 $1395{\pm}97Ma$로서 약 $1.7{\pm}1.4Ga$사이의 화성활동과 수반한 변성작용을 나타낸다. 이를 전 지구적인 지체구조운동에 대비하면 경기육괴에서 광범위하게 보고되는 $1.9{\sim}1.8Ga$의 열적사건은 콜롬비아 초대륙의 형성과 관련된 조산운동으로, 이 연구의 $1.7{\sim}1.4Ga$ 심성암의 관입과 변성작용은 콜롬비아 초대륙 형성 후의 대륙연변부의 성장과 관련된 결과로 해석할 수 있다. 그러나 이는 주로 연대측정 자료에 의존한 것으로서 추후 자세한 암석학 및 지화학적 연구를 통한 검정이 필요하다.

Keywords

References

  1. 오창환, 김정빈, 박영석, 김성원, 2006, 경기육괴의 고원생대 암류들에 대한 SHRIMP U-Pb 저어콘 연대와 그 의의. 지질학회지, 42, 587-606
  2. 조등룡, 2004, 저어콘 아입자 분석을 위한 효율적인 광물 분리 및 시료준비 방법. 암석학회지, 13, 126-132
  3. 조등룡, 김용준, 2003, 경기육괴 포천 지역의 흑운모 편마암과 우백질 화강암맥에 대한 SHRIMP U-Pb 저어콘 연대 측정. 광역변성작용 연령 및 퇴적시기의 제한. 대한 지질학회 2003년 추계학술발표회 초록집, p.76
  4. Amli, R. and Griffin, W.L., 1975, Microprobe analyses of REE minerals using empirical correction factors. American Mineralogist, 60, 599-606
  5. Asami, M., Suzuki, K. and Grew, E.S., 2002, Chemical Th-U-total Pb dating by electron microprobe analysis of monazite, xenotime and zircon from the Archean Napier Complex, East Antarctica: evidence for ultra-high-temperature metamorphism at 2400 Ma. Precambrian Research, 114, 249-275 https://doi.org/10.1016/S0301-9268(01)00228-5
  6. Bence, A.E. and Albee, A.L., 1968. Empirical correction factors for the electron microanalysis of silicates and oxides. Journal of Geology, 76, 382-403 https://doi.org/10.1086/627339
  7. Chang, E.Z., 1996. Collision orogene between north and south China and its eastern extension in the Korean Peninsula. Journal of Southeast Asian Earth Sciences. 13, 267-277 https://doi.org/10.1016/0743-9547(96)00033-5
  8. Chemiak, D.J. and Watson, E.B. 1998. Pb diffusion in zircon. Geological Society of America Abstracts with Programs 30, A213
  9. Cho, D.-L., Kwon S.-T., Jeon, E.-Y. and Armstrong R., 2005, SHRIMP U-Pb zircon ages of metamorphic rocks from the Samgot Unit, Yeoncheon Complex in the Imjingang Belt, Korea: Implications for the Phanerozoic tectonics of East Asia. Geological Society of America Abstracts with Programs, 37, p.388
  10. Cho, D.-L., Suzuki, K., Adachi, M. and Chwae, U., 1996. A preliminary CHIME age determination of monazite from metamorphic and granitic rocks in the Gyeonggi massif, Korea. Journal of Earth and Planetary Sciences, Nagoya University, 43, 49-65
  11. Cho M., 2001, A continuation of Chinese ultra-pressure belt in Korea: evidence from ion microprobe U-Pb zircon ages. Gondwana Research, 4, p. 708 https://doi.org/10.1016/S1342-937X(05)70505-0
  12. Chwae U, 1998, Does the Imjingang Fold Belt cross the mid-Korean Peninsula along the demilitarized zone (DMZ) as an extension of the Sulu Belt, China? Journal of Earth and Planetary Sciences, Nagoya University, 45, 41-73
  13. Davis, D.W., Schandl, E.S. and H.A. Wasteneys, 1994, U-Pb dating of minerals in alteration halos of Superior Province massive sulfide deposits: syngenesis versus metamorphism. Contribution to Mineralogy and Petrology, 115, 427-437 https://doi.org/10.1007/BF00320976
  14. Kato T., Suzuki K. and Adachi M, 1999, Computer program for the CHIME age calculation. Journal of Earth and Planetary Sciences, Nagoya University, 46, 49-56
  15. Kim, J.-B., Turek A., Chang H.-W., Park Y.-S. and Ahn K.-S., 1999, U-Pb zircon ages for Precambrian and Mesozoic plutonic rocks in the Seoul-Cheongju-Chooncheon area, Gyeonggi massif, Korea. Geochemical Journal, 33, 379-397 https://doi.org/10.2343/geochemj.33.379
  16. Kim, S.W., Oh C.W., Williams, I.S., Rubatto D., Rhu, I.-C., Rajesh, V.J., Kim, C.-B., Guo, J. and Zhai, M., 2006, Phanerozoic high-pressure eclogite and intermediate-pressure granulite facies metamorphism in the Gyeonggi Massif, South Korea: Implications for the eastward extension of the Dabie-Sulu continental collision zone. Lithos, 92, 357-377 https://doi.org/10.1016/j.lithos.2006.03.050
  17. Kusiak, M.A, Kedzior, A., Paszkowski. M., Suzuki, K., Gonzalez-Alvarez, I., Wajsprych, B. and Doktor M., 2006, Provenance implications of Th-U-Pb electron microprobe ages from detrital monazite in the Carboniferous Upper Silesia Coal Basin, Poland. Lithos. 88, 56-71 https://doi.org/10.1016/j.lithos.2005.08.004
  18. Lee, J.K.W., Williams, I.S. and ELLIS, D.J., 1997, Pb, U and Th diffusion in natural zircon. Nature 390, 159-162 https://doi.org/10.1038/36554
  19. Lee, S.R., Cho, M., Cheong, C.-S., Kim, H. and Wingate, M.T.D., 2003, Age, geochemistry, and tectonic significance of Neoproterozoic alkaline granitoids in the northwestern margin of the Gyeonggi massif, South Korea. Precambrian Research, 2294, 1-14
  20. Lee S.R., Cho, M., Yi, K. and Stem R.A., 2000, Early Proterozoic Granulites in Central Korea: Tectonic Correlation with Chinese Cratons. Journal of Geology, 108, 729-738 https://doi.org/10.1086/317951
  21. Liu, X., 1993. High-P metamorphic belt in central China and its possible eastward extension to Korea. Journal of the Petrological Society of Korea 2, 9-18
  22. Oh C.W., Kim S.W., Choi, S.G., Zhai M., Guo J. and Krishnan, S., 2005, First Finding of Eclogite Facies Metamorphic Event in South Korea and Its Correlation with the Dabie-Sulu Collision Belt in China. The Journal of Geology, 113, 226-232 https://doi.org/10.1086/427671
  23. Oh C.W., Kim, S.W. and Williams, I.S. 2006, Spinel granulite in Odesan area, South Korea: Tectonic implications for the collision between the North and South China blocks. Lithos, 92, 557-575 https://doi.org/10.1016/j.lithos.2006.03.051
  24. Ree, J.H., Cho, M., Kwon, S.-T. and Nakamura, E., 1996. Possible eastward extension of Chinese collision belt in South Korea: the Imjingang belt. Geology, 24, 1071-1074 https://doi.org/10.1130/0091-7613(1996)024<1071:PEEOCC>2.3.CO;2
  25. Rogers, J.J.W. and Santosh, M., 2002, Configuration of Columbia, a Mesoproterozoic Supercontinent. Gondwana Research, 5, 5-22 https://doi.org/10.1016/S1342-937X(05)70883-2
  26. Sagong H., Cheong C.S. and Kwon, S.T., 2003, Paleoproterozoic orogeny in South Korea: evidence from Sm-Nd and Pb step-leaching garnet ages of Precambrian basement rocks. Precambrian Research, 122, 275-295 https://doi.org/10.1016/S0301-9268(02)00215-2
  27. Smellie, J.A.T., Cogger, N. and Herrington, J., 1978, Standards for quantitative microprobe determination of uranium and thorium with additional information on the chemical formulae of davidite and euxenite-polycrase. Chemical Geology, 22, 1-10 https://doi.org/10.1016/0009-2541(78)90016-5
  28. Smith, H.A. and Giletti, B.J., 1997, Lead diffusion in monazite. Geochimica et Cosmochimica Acta 61, 1047-1055 https://doi.org/10.1016/S0016-7037(96)00396-1
  29. Suzuki, K. and Adachi, M., 1991a, Precambrian provenance and Silurian metamorphism of the Tsubonosawa paragneiss in the South Kitakami terrane, revealed by the chemical Th-U-total Pb isochron ages of monazite, zircon and xenotime. Geochemical Journal, 25, 357-376 https://doi.org/10.2343/geochemj.25.357
  30. Suzuki, K. and Adachi, M., 1991b, The chemical Th-U-total Pb isochron ages of zircon and monazite form the Gray Granite of the Hida terrane, Japan. Journal of Earth and Planetary Sciences, Nagoya University, 38, 11-37
  31. Suzuki, K. and Adachi, M., 1994, Middle Precambrian detrital monazite and zircon from the Hida gneiss on Oki-Dogo Island, Japan: their origin and implication for the correlation of basement gneiss of Southwest Japan and Korea. Tectonophysics, 235, 277-292 https://doi.org/10.1016/0040-1951(94)90198-8
  32. Suzuki, K. and Adachi, M., 1998, Denudation history of the high T/P Ryoke metamorphic belt, southwest Japan: constraints from CHIME monazite ages of gneisses and granitoids. Journal of Metamorphic Geology, 16, 23-37 https://doi.org/10.1111/j.1525-1314.1998.00057.x
  33. Vavra, G, Schmid, R. and Gebauer, D., 1999, Internal morphology, habit and U-Th-Pb microanalysis of amphiboloite-to-granulite facies zircon: geochronology of the Ivrea Zone (Southern Alps). Contribution to Mineralogy and Petrology, 134, 380-404 https://doi.org/10.1007/s004100050492
  34. Yin, A. and Nie, S., 1993, An indentation model for the north and south china collision and the development of the Tan-Lu and Honam fault systems, Eastern Asia. Tectonics, 12, 801-813 https://doi.org/10.1029/93TC00313
  35. York, D., 1966. Least-squares fitting of a straight line. Canadian Journal of Physics, 44, 1079-1086 https://doi.org/10.1139/p66-090
  36. Zhai M., Guo, J. and Liu W., 2005, Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton: a review. Journal of Asian Earth Sciences, 24, 547-561 https://doi.org/10.1016/j.jseaes.2004.01.018
  37. Zhao, G.C., Cawood, P.A., Wilde, S.A., Sun, M. and Lu, L.Z., 2000. Metamorphism of basement rocks in the Central Zone of the North China Craton: implications for Paleoproterozoic tectonic evolution. Precambrian Research, 103, 55-88 https://doi.org/10.1016/S0301-9268(00)00076-0
  38. Zhao, G.C., Sun, M., Wilde, S.A. and Li S., 2004, A Paleo-Mesoproterozoic supercontinent: assembly, growth and breakup. Earth-Sciences Reviews, 67, 91-123 https://doi.org/10.1016/j.earscirev.2004.02.003
  39. Zhao, G.C., Sun, M., Wilde, S.A. and Li S., 2005, Late Aechean to Paleoproterozoic evolution of the North China Craton: key issures revisited. Precambrian Research, 136, 177-202 https://doi.org/10.1016/j.precamres.2004.10.002
  40. Zhao, G.C., Wilde, S.A., Cawood, P.A. and Sun, M., 2001, Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107, 45-73 https://doi.org/10.1016/S0301-9268(00)00154-6